跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛皓之
研究生(外文):shiuehawjy
論文名稱:以無電鍍鎳觸媒成長奈米碳管應用於電化學超級電容器之研究
論文名稱(外文):Synthesis of Carbon Nanotubes over Electroless-Plating Ni Films and TheirApplications as the Electrode Materials of Electrochemical Supercapacitors
指導教授:陳雍宗陳雍宗引用關係姚品全姚品全引用關係葉競榮葉競榮引用關係
學位類別:碩士
校院名稱:大葉大學
系所名稱:電信工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:無電鍍熱化學氣相沉積法多壁奈米碳管石墨電極氧化釕電鍍法
外文關鍵詞:Electroless PlatingThermal CVDMulti-walled Carbon nanotube (MWNT)glassy carbon electrode(GCE)ruthenium oxidepseudocapacitive
相關次數:
  • 被引用被引用:1
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
觸媒在基板上的製備對奈米碳管的成核及成長極為重要,本研究以無電鍍鎳膜為觸媒,然後利用常壓熱化學氣相沉積法於矽基板上成長奈米碳管。主要的考量為以電化學鍍膜方式,於矽基板上成長高密度多壁奈米碳管。在電化學電容器的應用方面,我們利用石墨電極結合奈米碳管與氧化釕之複合材料電極來探討改良其電容特性的可行性。由我們的研究可獲得幾點結論,(1)矽基板在鍍鎳前經過敏化、活化處理能使觸媒分佈均勻且析鍍時間較短,(2)觸媒厚度愈薄分佈愈均勻愈可得到管徑小而量多的奈米碳管,(3)通入氫氣有助於抑制碳纖與碳簇生成,同時使奈米碳管之管徑減小,(4)使用氨氣在600℃下做前處理與在800℃下成長,所得之奈米碳管密度高且碳管結構較直,(5)在電化學的量測分析上,我們發現在石墨電極上成長奈米碳管後,再使用電鍍法將釕金屬鍍在奈米碳管上,其電化學電容器之特性更接近理想電容器,且儲存的電荷量也大幅提升。
In this study, multi-walled carbon nanotubes were synthesis by thermal chemical vapor deposition over electroless plating nickel films with silicon substrate as the sbustrate. For the application of the electrochemical capacitors, carbon nanotubes were directly grown on the glassy carbon electrode with/without the electrodeposited ruthenium oxides onto the surface of the as-deposited carbon nanotubes films. The electrochemical behaviors of the as-prepared carbon electrodes were investigated by cyclic voltammetry. The results showed that: (a). Before electroless nickel plating, a process to sensitize and activated the substrate is necessary to achieve uniform and highly dispersive Ni films in a shorter duration, (b). The thinner and uniformly coated Ni-P particles, the smaller the diameters of the multi-walled carbon nanotubes are grown with more denser nanotubes distribution, (c). Hydrogen is necessary for CNT growth to prevent other amorphous carbonaceous carbon depoited. (d). NH3 ambient is helpful for better control of the nanotubes structure and growth density both in pretreatment and growth stage. (e). Cyclic voltammograms shows that the pseudocapacitive behavior of as-grown multiwalled carbon nanotubes functionctionalized with electrodeposited Ruthenium oxides. The specific capacitance of the CNTs and Ruthenium oxides functionalized CNTs is apparently greater than that of pristine GCE in the same medium.
封面內頁
簽名頁
授權書...........................iii
中文摘要..........................iv
英文摘要..........................v
誌謝............................vi
目錄............................vii
圖目錄...........................xi
表目錄...........................xiv


第一章 緒論.............................................1
1.1 前言...............................................1
1.2 研究動機與目的......................................6
第二章 文獻回顧........................................8
2.1 奈米碳管的合成......................................8
2.1.1 電弧放電法........................................8
2.1.2 雷射剝蝕法.......................................10
2.1.3 化學氣相沉積法....................................11
2.2 奈米碳管的成長機制...................................12
2.3 無電鍍鎳沉積法......................................15
2.3.1 簡介.............................................15
2.3.2 無電鍍鎳原理......................................16
2.3.3 基板的表面處理....................................17
2.3.4 無電鍍鎳鍍液組成及特性.............................18
2.4 奈米碳管的特性......................................19
2.4.1 電性.............................................20
2.4.2 機械性質..........................................20
2.4.3 熱穩定性..........................................22
2.4.4 熱傳導性..........................................23
2.4.5 熱膨脹係數........................................23
2.5 奈米碳管的應用.......................................24
2.5.1 場發射平面顯示器...................................24
2.5.2 強化複合材料之添加劑................................25
2.5.3 超微細化學偵測器....................................25
2.5.4 儲氫材料...........................................26
2.5.5 微探針.............................................26
2.5.6 鋰離子電池..........................................27
2.5.7 微電極.............................................27
2.5.8 奈米級鑷子..........................................27
2.5.9 高效電晶體..........................................28
2.6 電化學原理............................................29
2.6.1 電化學反應系統.......................................29
2.6.2 影響電化學反應系統的因素..............................33
2.7 金屬氧化物電極種類以及製備的方法.........................34
2.8 電化學電容器...........................................36
2.8.1 電化學電容器的分類....................................38
第三章 實驗設備與方法.......................................41
3.1 實驗裝置及實驗步驟......................................41
3.1.1 Thermal CVD 系統....................................41
3.1.2 實驗方法.............................................43
3.1.3 矽晶片的製備與前處理..................................44
3.1.4 石墨基材的製備與前處理.................................44
3.1.5 無電鍍鎳析鍍製程......................................45
3.2 成長奈米碳管............................................46
3.3 釕氧化物電極之製備.......................................47
3.4 電化學分析實驗..........................................48
3.4.1 穩定性實驗............................................50
3.4.2 可逆性實驗............................................51
3.5 材料分析與鑑定...........................................51
3.5.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)...52
3.5.2 高解析穿透式電子顯微鏡 (High Resolution Transmission Electron Microscope)................................................52
3.5.3 拉曼光譜 (Raman Spectrum).............................53
第四章 結果與討論............................................55
4.1 前處理對奈米碳管成長特性之影響.............................55
4.1.1 鎳觸媒在不同氣氛下前處理之表面型態.......................55
4.1.2 前處理溫度之影響.......................................57
4.2 鎳膜厚度對成長特性的影響..................................59
4.3 成長中添加氫氣的影響......................................61
4.3.1 成長中添加氫氣與氨氣的差異性.............................63
4.4 奈米碳管之微結構分析......................................64
4.4.1 竹節狀結構(bamboo-like structure)的形成.................68
4.5 成長奈米碳管之拉曼光譜分析.................................69
4.6 石墨基材披覆電極材料之電化學特性與比較.......................71
4.6.1 石墨電極之循環伏安行為...................................71
4.6.2 石墨電極之可逆性及老化測試...............................72
4.6.3 石墨電極披覆奈米碳管之表面情形............................73
4.6.4 石墨電極披覆奈米碳管之循環伏安行為........................73
4.6.5 石墨電極披覆奈米碳管之可逆性及老化測試.....................74
4.6.6 石墨電極披覆氧化釕之循環伏安行為..........................75
4.6.7 石墨電極披覆氧化釕之可逆性及老化測試.......................76
4.6.8 石墨電極披覆奈米碳管與氧化釕之表面情形.....................77
4.6.9 石墨電極披覆奈米碳管與氧化釕之循環伏安行為..................79
4.6.10 石墨電極披覆奈米碳管與氧化釕之可逆性及老化測試.............80
第五章 結論及未來展望..........................................82
5.1 結論.....................................................82
5.2 未來展望.................................................83
參考文獻.....................................................85
[1] A. Brenner, G.E. Riddell, J. Res. NBS 37 (1) (1946) 31.
[2] G..O. Mallory, J.B. Hajdu, “Electroless Plating: Fundamentals and Applications”, AESF, Orlando, Florida, USA, 1990.
[3] M.D. Feldstein, Plat. Surf. Fin. 85 (1998) 248.
[4] X. Haowen, Z. Bangwei, J. Mater. Pro. Techno. 124 (2002) 8.
[5] H. Iwasa, M. Yokozawa, I. Teramoto, J. Electrochem. Soc. 115 (1968) 485.
[6] H. Cachet, M. Froment, E. Souteyrand, J. Electrochem. Soc. 139 (1992) 2920.
[7] M.V. Sullivan, J.H. Eigler, J. Electrochem. Soc. 104 (1957) 226.
[8] C.H. Ting, M. Paunovic, P.L. Pai, G. Chiu, J. Electrochem. Soc. 136 (1989) 462.
[9] R.M. Kennedy, K. Minten, X. Yang, D.F. Evans, J. Vac. Sci. Technol. B 9 (1991) 735.
[10] K.Wong, K. Chi, A. Rangappan, Plat. Surf. Fin. July (1988) 70.
[11] J. Lohau, S. Friedrichowski, G. Dumpich, E.F. Wassermann,J. Vac. Sci. Technol. B 16 (1998) 77.
[12] H. Sugimura, N. Nakagiri, Thin Solid Films 281-282 (1996) 572.
[13] T. Tada, T. Kanayama, J. Vac. Sci. Technol. B 16 (1998) 3934.
[14] Y. Shacham-Diamad, Y. Sverdlov, Microelectron Eng. 50(2000)525.
[15] H. W.Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318, (1985) 162.
[16] T. W. Ebbesen, Carbon Nanotube-Preparation and Properties, CRC Press, New York,(1997), p.37.
[17] S. Iijima,“Helical microtubules of graphitic carbon,”Nature, 354
(1991) 56.
[18] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Saroy, J. Vazquez, and R. Beyers.“Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,”Nature, 363 (1993) 605.
[19] M. J. Yacaman, M. M. Yoshida, L. Rendon, and J. G. Santiesteban,“Catalytic growth of carbon microtubules with fullerene structure,” Appl. Phys. Lett., 62 (1993)202.
[20] M. Endo, K. Takeuchi, K. Takahashi, H. W. Kroto, and A. Sarkar,“Pyrolytic carbon nanotubes from vapor-grown carbon fibers,”Appl. Phys. Lett. 33[7] (1995) 873.[21] F. Hoshi, K. Tsugwa, A. Goto, T. Ishikura, S. Yamashita, M. Yumura, T. Hirao, K. Oura,Y. Koga, Diamond Relat. Mater. 10 (2001) 254.
[22] M. A. Guillorn, A. V. Melechko, V. I. Merkulov, E. D. Ellis, C. L. Britton, M. L. Simpson, D. H. Lowndes, L. R. Baylor, Appl. Phys. Lett. 79 (2001) 3506.
[23] V. I. Merkulov, D. H. Lowndes, L. R. Baylor, Appl. Phys. Lett. 89 (2001) 1933.
[24] M. A. Guillorn, A. V. Melechko, V. I. Merkulov, D. K. Hensley, M. L. Simpson, D. H. Lowndes, Appl. Phys. Lett. 81 (2001) 3660.
[25] F. Marken, M. K. Gerrard, I. M. Mellor, R. J. Mortimer, C. E. Madden, S. Fletcher, Electrochem. Commun, 3 (2001) 177.
[26] P. V. Adhyapak, T. Maddanimath, S. Pethkrar, A. J. Chandwadkar, Y. S. Negi, K. Vijayamohanan, J. Power Sources 109 (2002) 105.
[27] H. S. Youn, H. Ryu, T. H. Cho, W. K. Choi. International Journal of Hydrogen Energy 27 (2002) 937.
[28] H. Zhu, X. Li, L. Ci, C. Xu, D. Wu, Z. Mao, Materals Chemisty and Physics 78 (2003) 670.
[29] X. Yan, X. Gao, Y. Li, Z. Liu, F. Wu, Y. Shen, D. Song, Chem. Phys. Lett. 372 (2003) 336.
[30] S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, and C. Dekker,“Room-temperature transistor based on a single carbon nanotube,”Nature, 386(1997) 474.
[31] C. Liu, Y.C. Chen, Y. Tzeng, Effects of carbon content in iron catalyst coatings on the growth of vertically aligned carbon nanotubes on smooth silicon surfaces by thermal chemical vapor deposition, Diamond and Related Materials, 13 (2004) 1274–1280.
[32] T. de los Arcos et al., Influence of iron–silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition, Appl. Phys. Lett., 80 (2002) 2383.
[33] T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature, 367,519 (1994).
[35] T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992). J. M. Lambert, P. M. Ajayan, P. Bernier, J. M. Planeix, V. Brotons, B. Coq, and J. Castaing, Chem. Phys. Lett., 226, 364 (1994).
[36] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 273, 483 (1996).
[37] Gorbunov A, Jost O, Pompe W, Graff A, Carbon 40(2002),113
[38] Oberlin A, Endo M, Koyama T, Carbon 14(1976),133
[39] Oberlin A, Endo M, Koyama T, J. Crys. Growth 32(1976),335
[40] Baird T, Fryer J.R, Giant B, Carbon 12(1974),591
[41] M. R. Falvo, G. J. Clary, R. MII. Taylor, V Chi, FP Brooks, SWashburn, R Superfine, 1997, Nature, 389, p. 582
[42] M. Treacy, T. W. Ebesen, J. M. Gibson, 1996, Nature, 381, p678
[43]鄭凱文,「利用鐵、鎳金屬片及次微米鐵點陣列成長具方向性奈米碳管」,國立東華大學材料科學與工程研究所碩士論文,第8頁,民國九十一年
[44] N. Krishnankutty, C. Park, N. M. Rodriguez, R. T. K. Baker, 1995,Carbon, 27, pp. 925-930
[45] M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, 1998, Nanotube : A Revolution in Materials Science, Topics in Current Chemistry 199 ,p. 1
[46] S. Bandow, 1997, Japanese Journal of Applied Physics, Part 2 36, pp.1403-1405
[47] B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet,P. Bernier, and P. Poulin, 2000, Science, 290, p. 1331
[48] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, 2000, Science, 287, p. 622
[49] J. H. Hafner, C. L. Cheung, C. M. Lieber, 1999, Journal AmericaChemical Society, 121, p. 9750
[50] A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”,John Wiley & Sons, Singapore(1980).
[51] D. Pletcher, “A First Course in Electrode Processes”, The Electrochemical Consultancy, England (1991).
[52] D. R. Crow, “Principles and Applications of Electrochemistry”, 2nd Ed. Chapman and Hall Ltd. London (1979).
[53] 陳奕勳, “陽極沈積錳系水合氧化物於電化學超級電容器之應用”,國立中正大學化學工程研究所碩士論文, 2003.
[54] A. M. Couper, D. Pletcher, and F. C. Walsh, Chem. Rev., 90, 837 (1990).
[55] H. Wendt, “Electrocatalysis in Organic Electrochemistry”, Electrochim. Acta, 29, 1513 (1991).
[56] B. Marsan, N. Fradette, and G. Beaudoin, J. Electrochem. Soc. 139, 1889(1992).
[57] L. Nanni, S. Polizzi, A. Benedetti, and A.D. Battisti, “Morphology, Microstructure, and Electrocatalytic Properties of RuO2-SnO2 Thin Films” J. Electrochem. Soc., 146, 220-225 (1999).
[58] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 45 (2000) 2483.
[59] 黃耀煌, “循環伏安法置備之含水釕氧化物於電化學電容器之應用”,國立中正 大學化工研究所碩士論文, 1999.
[60] J. P. Zheng and T. R. jow, “A New Charge Strage Mechanism for Electrochemical Capacitors,” J. Electrochem. Soc., 142, L6-L8 (1995)
[61] Ting-Kan Tsai , Chia-Chih Chuang , Chuen-Guang Chao ,Wei-Long Liu, “Growth and field emission of carbon nanofibers on electroless Ni–P alloy catalyst,” Diamond and Related Materials 12 (2003) 1453–1459.
[62] Girish Arabale, Deepali Wagh, Mahesh Kulkarni, I.S. Mulla, S.P. Vernekar, K.Vijayamohanan, A.M. Rao, “Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide,” Chemical Physics Letters 376 (2003) 207–213.
[63] 江鴻儒, “循環伏安法及電鍍法制備釕電極在電化學電容器之應用”,國立中正大學化學工程研究所碩士論文, 2001.
[64] Xu Zhang, et al., “Surface-enhanced Raman of Z-vibration mode in single-walled and multi-walled carbon nanotube,” Chemical Physics Letters, 372(2004) 497.
[65] P. E. Nolan, M. J. Schabel, D. C. Lynch., Hydrogen control ofcarbon deposit morphology, Carbon, 33(1995) 79
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top