|
1.Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 7, 56-58. 2. Radushkevich, L. V., & Lukyanovic, V. M. (1952). Zh. Fiz. Khim. 26, 88. 3.Hofer, L. J. E., Sterling, E., & MacCartney, J. T. (1955). J. Phys. Chem., 59, 6210. 4.Kroto, H. W., Heath, J. R., O’Brian, S. C., Curl, R. F., & Smalley, R. E.(1985). C60: Buckminsterfullerene. Nature, 318 (6042), 162-163. 5.Kratschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: A new form of carbon. Nature, 347, 354-358. 6.Maiti, Brabec, C. J., Roland, C., & Bernholc, J. (1995). Theory of carbon nanotube growth. Phys. Rev. B, 15; 52(20), 14850-14858. 7.Kusunoki, M., Rokkaku, M., & Suzuki, T. (1997). Epitaxial carbon nanotube film self-organized by sublimation decomposition of silicon carbide. Appl. Phys. Lett., 71(18), 2620-2622. 8.Zhang, Y., Gu, H., & Iijima, S. (1998). Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett., 73(26), 3827-3829. 9.Ebbesen, T. W. (1997). Carbon Nanotubes: Preparation and properties. CRC Press, Boca Raton, 139-162. 10.Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603-605. 11.Bethune, D. S., Kiang, C. H., deVries, M. S., Gorman, G., Saroy, R., Vazguez, J., & Beyers, R. (1993). Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605-607. 12.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., & Smalley, R. E. (1996). Crystalline ropes of metallic carbon nanotubes. Science, 273, 483-487. 13. Peter J. F. Harris, (1999). Carbon nanotubes and related structure. Cambridge University Press, Chapter 4.2: Electronic properties of nanotube. 16–54. 14.Charlier, J. C., & Issi, J. P. (1998). Electronic structure and quantum transport in carbon nanotubes. Applied Physics A: Materials Science & Processing, 67, 79-87. 15.Haus, M. D., Dresselhaus, G., Eklund, P., & Saito, R. (1998). Carbon nanotubes. Physics World, 11, 33-38. 16.Mintmire, J. W. & White, C. T. (1998). First-principles band structures of armchair nanotubes. Applied Physics A: Materials Science & Processing, 67, 65-69. 17.Dresselhaus, M. S., Dresselhaus, G., & Saito, R. (1995). Physics of carbon nanotubes. Carbon, 33, 883-891. 18.Jo, S. H., Tu, Y., Huang, Z. P., Carnahan, D. L., Wang, D. Z., & Ren, Z. F. (2003). Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett., 82, 3520-3522. 19.Wang, Z. L., R. P. Gao, W. A. deHeer, P. Poncharal, (2002). In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett., 80, 856-858. 20.Bonard, J. M., Dean, K. A., Coll, B. F., & Klinke, C. (2002). Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett., 89(19), 4, 1976021-24. 21.Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., & Smalley, R. E. (1995). Unraveling nanotubes: field emission from an atomic wire. Science, 269, 1550-1553. 22.DeHeer, W. A., Chatelain, A., & Ugarte, D. (1995). A carbon nanotube field-emission electron source. Science, 270, 1179-1180. 23.Shyu, Y. M., & Hong, F. C. N. (2001). Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition. Mater. Chem. Phys., 72(2), 223-227. 24.Wang, Y. H., Lin, J., & Huan, C. H. A. (2002). Macroscopic field emission properties of aligned carbon nanotubes array and randomly oriented carbon nanotubes layer. Thin Solid Films, 405(1-2), 243-247. 25.Bonard, J., Salvetat, J., Stockli, T., de Heer, W. A., Forro, L., & Chatelain, A. (1998). Field emission from single-wall carbon nanotube films. Appl. Phys. Lett., 73(7), 918-920. 26.Wang, Q. H., Corrigan, T. D., Dai, J. Y., & Chang, R. P. H. (1997). Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett., 70(24), 3308-3310. 27.Sung, S. L., Tsai, S. H., Tseng, C. H., Chiang, F. K., Liu, X. W., & Shih, H. C. (1999). Well-aligned carbon nanotubes synthesized in anodic alumina by electron cyclotorn resonance chemical vapor deposition. Appl. Phys. Lett., 74(2), 197-199. 28.Saito, Y., & Uemura, S. (2000). Field emission from carbon nanotubes and its application to electron sources. Carbon, 38(2), 169-182. 29.Yumura, M., Ohshima, S., Uchida, K., Tasaka, Y., Kuriki, Y., Ikazaki, F., Saito, Y., & Uemura, S. (1999). Synthesis and purification of multi-walledcarbon nanotubes for field emitter applications. Diamond and Related Materials, 8, 785-791. 30.Kuttel, O. M., Groning, O., Emmenegger, C., Nilsson, L., Mallard, E., Diederich, L., & Schlapbach, L. (1999). Field emission from diamond, diamond-like and nanostructured carbon films. Carbon, 37, 745. 31.楊素華、藍慶忠 (2004)。科技發展。382期,71。 32.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., & Hayshi, T. (1993). Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chemical Physics Letters, 204, 277-282. 33.Dai, H., Rinzer, A. G., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1996). Single-wall nanotubes produces by mental catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett., 260, 471-475. 34.Lee, Y. H., Kim, S. G., & Tománek, D. (1997). Catalytic growth of single-wall carbon nanotubes: an Ab initio study. Phys. Rev. Lett., 78, 2393-2396. 35.Endo, M., & Kroto, H. W. (1992). Formation of carbon nanofibers. Journal of Physical Chemistry, 96, 6491-6944. 36.Baker, R. T. K., & Harries, P. S. (1978). The formation of filamentous carbon. Chemistry and Physics of Carbon, New York: Marcel Deckker, 14, 83-165. 37.Baker, R. T. K., Braker, M. A., Harries, P. S., Feates, F. S., & Waite, R. J. (1972). Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene. Journal of Catalysis, 26, 51-62. 38.Oberlin, A., Ento, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32, 335-349. 39.Baird, T., & Fryer, J. R. (1974). Carbon formation on iron and. nickel foils by hydrocarbon pyrolysis reactions at 700°C. Carbon, 12, 591-602. 40.Oberlin, A., Ento, M., & Koyama, T. (1976). High resolution electron microscope observations of graphitized carbon fibers Carbon. Carbon, 14, 133-157. 41.Journet, C. et al., (1998). Production of carbon nanotubes. Applied Physics, .67, 1-9. 42.Alan, M. et al., (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 292, 567-574. 43.Yacaman, M. J., Yoshida, M. M., Rendon, L., & Santiesteban, J. G. (1993). Catalytic growth of carbon. microtubules with fullerene structure. Appl. Phys. Lett., 62, 202-204. 44.Baker, R. T. K., & Chludzinski, J. J. (1980). Filamentous carbon growth on nickel–iron surfaces—effect of various oxide additives. Journal of Catalysis, 64, 464-478. 45.Baker, R. T. K., Harries, P. S., Thomas, R. B., & Waite, R. J. (1973). Formation of filamen-tous carbon from iron and chromium catalyzed decomposition of acetylene. Journal of Catalysis, 30, 86-95. 46.Baker, R. T. K., & Waite, R. J. (1975). Formation of carbonaceous deposit from the platinum-iron catalyzed decomposition. Journal of Catalysis, 37, 101-105. 47.Jung, M., Eun, K. Y., Lee, J. K., Baik, Y. J., Lee, K. R., & Park, J. W. (2001). Growth of carbon nanotubes by chemical vapor deposition. Diamond and Related Materials, 10, 1235-1240. 48.Xie, S., Li, W., Pan, Z., Chang, B., & Sun, L. (2000). Self-assembly of shape-controlled nanocrystals and their in-situ thermodynamic properties. Materials Science and Engineering A, 286, 11-15. 49.Chen, X. H., Feng, S. Q., Ding, Y., Peng, J. C., & Chen, Z. Z. (1999). The formation conditions of carbon nanotubes array based on FeNi alloy island films. Thin Solid Films, 339, 6-9. 50.Lee, C. J., Park, J., Kang, S. Y., & Lee, J. H. (2000). Growth of well-aligned carbon nanotubes on a large area of Co-Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition. Chemical Physics Letters, 323, 554-559. 51.Terrones, M. et al., (1998). Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chemical Physics Letters, 285, 299-305. 52.Liang, Q., Li, Q., Chen, D. L., Zhou, D. R., Zhang, B. L., & Yu, Z. L. (2000). Carbon nanotube prepared in the atmosphere of partial oxidation of methane. Chemical Journal of Chinese Universities-Chineses, 21(4), 623-625. 53.Hernadi, K., Fonseca, A., Nagy, J. B., Siska, A., & Kiricsi, I. (2000). Production of nanotubes by the. catalytic decomposition of different carbon-containing compounds. .Applied Catalysis A: General, 199, 245-255. 54.Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., & Wang, G. (1996). Large-scale synthesis of aligned carbon nanotubes. Science, 274, 1701-1703. 55.Pan, Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y., & Wang, G. (1999). Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chemical Physics Letters, 299, 97-102. 56.Li, A. P., Muller, F., Birner, A., Nielsch, K., & Gosele, U. (1998). Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., 84, 6023-6026. 57.Masuda, H., Yamada, H., Satoh, M., & Asoh, H. (1997). Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett., 71, 2770-2772. 58.Masuda, H., & Satoh, M. (1996). Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys., part 2, 35, 126-129. 59.Nolan, P. E., Schabel, M. J., & Lynch, D. C. (1995). Hydrogen control of carbon deposit morphology. Carbon, 33, 79-85. 60.Pinheiro, P., Schouler, M. C., Gadelle, P., Mermoux, M., & Dooryhee, E. (2000). Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts. Carbon, 38(10), 1469-1479. 61.Khassin, A. A., Yurieva, T. M., Zaikovskii, V. I., & Parmon, V. N. (1998). Effect of metallic cobalt particles size on occurrence of CO disproportionation. Role of fluidized metallic cobalt-carbon solution in carbon nanotube formation. Reaction Kinetic and Catalysis Letter, 64, 63-71. 62.Tsai, S. H., Chao, C. W., Lee, C. L., & Shin, H. C. (1999). Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis. Appl. Phys. Lett., 74, 3462-3464. 63.Huang, Z. P., Xu, J. W., Ren, Z. F., Wang, J. H., Siegal, M. P., & Provencio, P. N. (1998). Growth of highly-oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett., 73, 3845-3847. 64.Ren, Z. F., Huang, Z. P., Wang, D. Z., Wen, J. G., Xu, J. W., Wang, J. H., Calvet, L. E., Chen, J., Klemic, J. F., & Reed, M. A. (1999). Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett., 75, 1086-1088. 65.Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. (1999). Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512-514. 66.Kwon, Y. K., Lee, Y. H., Kim, S. G., Jund, P., Tománek, D., & Smalley, R. E. (1997). Morphology and stability of growing multiwall carbon nanotubes. Phys. Rev. Lett., 79, 2065-2068. 67.Oh, D. H., & Lee, Y. H. (1998). Stability and cap formation mechanism of single-walled carbon nanotubes. Phys. Rev. B, 58, 7407-7411. 68.Kuznetsov, V. L., Usoltseva, A. N., Chuvilin, A. L., Obraztsova, E. D. & Bonard, J. M. (2001). Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes. Phys. Rev. B, 64, 235401-1. 69.Jacoby, S. L. S., Kowalik, J. S., & Pizzo, J. T. (1972). Iterative methods for nonlinear optimization problems. Prentice Hall, Inc., Englewood Cliffs, New Jersey, ISBN 0–13–.508199–X, 79-83. 70.Fowler, R. H., & Nordheim, L. W. (1928). Electron emission in intense electric fields. Proceedings of Royal Society of London, 119, 173-181.
|