(3.236.228.250) 您好!臺灣時間:2021/04/19 23:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張軒銘
研究生(外文):XUAN-MING ChANG
論文名稱:熱化學氣相沉積奈米碳管之場發射特性
論文名稱(外文):The Field Emission Current Characteristics of Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition
指導教授:李世鴻李世鴻引用關係
指導教授(外文):SHIH-FONG LEE
學位類別:碩士
校院名稱:大葉大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:153
中文關鍵詞:奈米碳管場發射熱化學氣相沉積
外文關鍵詞:carbon nanotubes (CNTs)field emissionthermal chemical vapor deposition (thermal CVD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用熱化學氣相沉積法來成長奈米碳管,主要的碳原子來源為甲烷,並以氬氣當載氣,將甲烷帶入爐管中反應,利用觸媒熱分解效應將甲烷分解成碳原子並成長出碳管。本研究中,我們針對催化劑厚度與成長溫度以及不同的催化劑三種因素對於所成長奈米碳管的的結構性質及場發射特性的影響來進行深入研究。
我們使用拉曼光譜及SEM來分析的奈米碳管的結構性質,而奈米碳管的場發射特性則是在高真空狀況下施加很大的電場所量測得到。從拉曼光譜及SEM的分析我們發現,當催化劑鎳膜成長厚度愈厚時,催化劑鎳膜在成核時期所形成鎳催化顆粒會愈大,造成碳管數量變少,而碳管的直徑卻會逐漸增大。當溫度較低時,所提供的熱能可能並不足以將原子填補至適當的結晶位置,所以在奈米碳管中會形成較多的結晶缺陷。而當溫度被提高時,碳原子的表面遷移速率增大,因此可以幫助碳管的成長,石墨結晶化程度也較好。而且從不同催化劑(Fe,Co,Ni)比較當中,以鎳膜成長的奈米碳管的性質最佳。
由F-N圖我們發現,鎳膜厚度增加的確會使功函數φ增大,場發射電流會因為所成長的碳管數量減少、碳管尖端電場增強效應減低、及碳管功函數增大三個因素同時作用而降低。這種場發射電流的改變不僅是因為所成長的碳管數量及直徑的改變所造成的,所成長碳管的結晶結構及功函數也會改變,造成電子發射難易程度的改變也是一個非常重要的因素。
In this work, thermal chemical vapor deposition was utilized to grow carbon nanotubes (CNTs). Silane was the main source for carbon, and argon was used as the carrier gas. CNTs were synthesized from carbon atoms obtained from catalytic thermal decomposition of silane. In this research, we study the effect of catalyst metal thickness and deposition temperature and different catalyst on structural properties and field emission characteristics of ocarbon nanotubes (CNTs) which were synthesized by thermal chemical vapor deposition of methane.
Raman spectroscopy and SEM were employed to study structural properties of CNTs, whereas field emission characteristics of CNTs were measured in high vacuum. From SEM and Raman spectroscopic studies, it is found that as catalyst nickel thickness gets thicker, the size of nickel balls formed in the nucleation period gets larger. Hence, the number of CNTs gets smaller, and the diameters of synthesized CNTs get larger. It is suspected that the supplied thermal energy at low temperature is not high enough to activate catalytic reaction to synthesize CNTs. At high temperature, thermal energy supplied has already cross the threshold for nucleation, and the diameter of CNT reach a saturation value. And CNTs were synthesized from tungsten layer is the best of different catalyst (Fe,Co,Ni).
From Fowler-Nordheim tunneling analysis, it was found that the increase in nickel thickness indeed increases the work function of CNT. Hence, we arrive at the conclusion that the decrease in the number of CNT, the decrease in the field enhancement factor, and the increase in the work function of CNT are three main factors that causes the decrease in the field emission current for larger nickel metal thickness. it is found that this change in field emission current is caused not only by the change in number and diameter of CNTs, but also by the change in crystalline structure and work function of CNTs. The increase in the work function of CNTs make it difficult for electrons to emit from CNTs which can play an important role in the emission current.
封面內頁
簽名頁
授權書.........................iii
中文摘要........................iv
英文摘要........................v
誌謝..........................vii
目錄..........................ix
圖目錄.........................xii
表目錄.........................xxi

第一章 緒論
1.1 奈米碳管的歷史與簡介............... 2
1.2 奈米碳管的結構.................. 7
1.3 奈米碳管的應用價值................ 9
第二章 理論與研究方法
2.1 電子場發射理論.................. 12
2.1.1 奈米碳管作為場發射電子源.......... 16
2.1.2 應用在場發射平面顯示器........... 20
2.2 奈米碳管的成長機制................ 23
2.2.1 奈米碳管主要成長機制............ 23
2.2.2 催化劑在奈米碳管成長中扮演的角色...... 24
2.2.3 奈米碳管成長模式分類............ 29
2.3 奈米碳管的製程方法................ 31
第三章 實驗儀器與實驗步驟
3.1 實驗動機..................... 42
3.2 實驗流程方塊圖.................. 43
3.3 實驗裝置與分析儀器................ 44
3.3.1 蒸鍍系統 & Thermal-CVD........... 44
3.3.2 SEM&拉曼光譜量測&電性量測......... 48
3.4 實驗方法與步驟.................. 58
3.4.1 蒸鍍系統 & Thermal-CVD........... 58
3.4.2 電性量測................. 59
第四章 實驗結果與討論
4.1 鎳膜厚度對奈米碳管成長機制的研究與討論...... 61
4.1.1 SEM(掃瞄式電子顯微鏡)的分析........ 61
4.1.2 Raman(拉曼光譜)的分析............ 72
4.1.3 電子場發射的分析.............. 77
4.2 不同催化劑(Fe,Co,Ni)對奈米碳管成長機制的研究與討論........................83
4.2.1 SEM(掃瞄式電子顯微鏡)的分析........83
4.2.2 Raman(拉曼光譜)的分析...........90
4.2.3 電子場發射的分析.............. 93
4.3 成長溫度對奈米碳管成長機制的研究與討論......97
4.3.1 SEM(掃瞄式電子顯微鏡)的分析........97
4.3.2 Raman(拉曼光譜)的分析........... 109
4.3.3 電子場發射的分析.............. 114
第五章 結論...................... 119

參考文獻........................122
1.Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 7, 56-58.
2. Radushkevich, L. V., & Lukyanovic, V. M. (1952). Zh. Fiz. Khim. 26, 88.
3.Hofer, L. J. E., Sterling, E., & MacCartney, J. T. (1955). J. Phys. Chem., 59, 6210.
4.Kroto, H. W., Heath, J. R., O’Brian, S. C., Curl, R. F., & Smalley, R. E.(1985). C60: Buckminsterfullerene. Nature, 318 (6042), 162-163.
5.Kratschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: A new form of carbon. Nature, 347, 354-358.
6.Maiti, Brabec, C. J., Roland, C., & Bernholc, J. (1995). Theory of carbon nanotube growth. Phys. Rev. B, 15; 52(20), 14850-14858.
7.Kusunoki, M., Rokkaku, M., & Suzuki, T. (1997). Epitaxial carbon nanotube film self-organized by sublimation decomposition of silicon carbide. Appl. Phys. Lett., 71(18), 2620-2622.
8.Zhang, Y., Gu, H., & Iijima, S. (1998). Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett., 73(26), 3827-3829.
9.Ebbesen, T. W. (1997). Carbon Nanotubes: Preparation and properties. CRC Press, Boca Raton, 139-162.
10.Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603-605.
11.Bethune, D. S., Kiang, C. H., deVries, M. S., Gorman, G., Saroy, R., Vazguez, J., & Beyers, R. (1993). Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605-607.
12.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., & Smalley, R. E. (1996). Crystalline ropes of metallic carbon nanotubes. Science, 273, 483-487.
13. Peter J. F. Harris, (1999). Carbon nanotubes and related structure. Cambridge University Press, Chapter 4.2: Electronic properties of nanotube. 16–54.
14.Charlier, J. C., & Issi, J. P. (1998). Electronic structure and quantum transport in carbon nanotubes. Applied Physics A: Materials Science & Processing, 67, 79-87.
15.Haus, M. D., Dresselhaus, G., Eklund, P., & Saito, R. (1998). Carbon nanotubes. Physics World, 11, 33-38.
16.Mintmire, J. W. & White, C. T. (1998). First-principles band structures of armchair nanotubes. Applied Physics A: Materials Science & Processing, 67, 65-69.
17.Dresselhaus, M. S., Dresselhaus, G., & Saito, R. (1995). Physics of carbon nanotubes. Carbon, 33, 883-891.
18.Jo, S. H., Tu, Y., Huang, Z. P., Carnahan, D. L., Wang, D. Z., & Ren, Z. F. (2003). Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett., 82, 3520-3522.
19.Wang, Z. L., R. P. Gao, W. A. deHeer, P. Poncharal, (2002). In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett., 80, 856-858.
20.Bonard, J. M., Dean, K. A., Coll, B. F., & Klinke, C. (2002). Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett., 89(19), 4, 1976021-24.
21.Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., & Smalley, R. E. (1995). Unraveling nanotubes: field emission from an atomic wire. Science, 269, 1550-1553.
22.DeHeer, W. A., Chatelain, A., & Ugarte, D. (1995). A carbon nanotube field-emission electron source. Science, 270, 1179-1180.
23.Shyu, Y. M., & Hong, F. C. N. (2001). Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition. Mater. Chem. Phys., 72(2), 223-227.
24.Wang, Y. H., Lin, J., & Huan, C. H. A. (2002). Macroscopic field emission properties of aligned carbon nanotubes array and randomly oriented carbon nanotubes layer. Thin Solid Films, 405(1-2), 243-247.
25.Bonard, J., Salvetat, J., Stockli, T., de Heer, W. A., Forro, L., & Chatelain, A. (1998). Field emission from single-wall carbon nanotube films. Appl. Phys. Lett., 73(7), 918-920.
26.Wang, Q. H., Corrigan, T. D., Dai, J. Y., & Chang, R. P. H. (1997). Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett., 70(24), 3308-3310.
27.Sung, S. L., Tsai, S. H., Tseng, C. H., Chiang, F. K., Liu, X. W., & Shih, H. C. (1999). Well-aligned carbon nanotubes synthesized in anodic alumina by electron cyclotorn resonance chemical vapor deposition. Appl. Phys. Lett., 74(2), 197-199.
28.Saito, Y., & Uemura, S. (2000). Field emission from carbon nanotubes and its application to electron sources. Carbon, 38(2), 169-182.
29.Yumura, M., Ohshima, S., Uchida, K., Tasaka, Y., Kuriki, Y., Ikazaki, F., Saito, Y., & Uemura, S. (1999). Synthesis and purification of multi-walledcarbon nanotubes for field emitter applications. Diamond and Related Materials, 8, 785-791.
30.Kuttel, O. M., Groning, O., Emmenegger, C., Nilsson, L., Mallard, E., Diederich, L., & Schlapbach, L. (1999). Field emission from diamond, diamond-like and nanostructured carbon films. Carbon, 37, 745.
31.楊素華、藍慶忠 (2004)。科技發展。382期,71。
32.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., & Hayshi, T. (1993). Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chemical Physics Letters, 204, 277-282.
33.Dai, H., Rinzer, A. G., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1996). Single-wall nanotubes produces by mental catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett., 260, 471-475.
34.Lee, Y. H., Kim, S. G., & Tománek, D. (1997). Catalytic growth of single-wall carbon nanotubes: an Ab initio study. Phys. Rev. Lett., 78, 2393-2396.
35.Endo, M., & Kroto, H. W. (1992). Formation of carbon nanofibers. Journal of Physical Chemistry, 96, 6491-6944.
36.Baker, R. T. K., & Harries, P. S. (1978). The formation of filamentous carbon. Chemistry and Physics of Carbon, New York: Marcel Deckker, 14, 83-165.
37.Baker, R. T. K., Braker, M. A., Harries, P. S., Feates, F. S., & Waite, R. J. (1972). Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene. Journal of Catalysis, 26, 51-62.
38.Oberlin, A., Ento, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32, 335-349.
39.Baird, T., & Fryer, J. R. (1974). Carbon formation on iron and. nickel foils by hydrocarbon pyrolysis reactions at 700°C. Carbon, 12, 591-602.
40.Oberlin, A., Ento, M., & Koyama, T. (1976). High resolution electron microscope observations of graphitized carbon fibers Carbon. Carbon, 14, 133-157.
41.Journet, C. et al., (1998). Production of carbon nanotubes. Applied Physics, .67, 1-9.
42.Alan, M. et al., (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 292, 567-574.
43.Yacaman, M. J., Yoshida, M. M., Rendon, L., & Santiesteban, J. G. (1993). Catalytic growth of carbon. microtubules with fullerene structure. Appl. Phys. Lett., 62, 202-204.
44.Baker, R. T. K., & Chludzinski, J. J. (1980). Filamentous carbon growth on nickel–iron surfaces—effect of various oxide additives. Journal of Catalysis, 64, 464-478.
45.Baker, R. T. K., Harries, P. S., Thomas, R. B., & Waite, R. J. (1973). Formation of filamen-tous carbon from iron and chromium catalyzed decomposition of acetylene. Journal of Catalysis, 30, 86-95.
46.Baker, R. T. K., & Waite, R. J. (1975). Formation of carbonaceous deposit from the platinum-iron catalyzed decomposition. Journal of Catalysis, 37, 101-105.
47.Jung, M., Eun, K. Y., Lee, J. K., Baik, Y. J., Lee, K. R., & Park, J. W. (2001). Growth of carbon nanotubes by chemical vapor deposition. Diamond and Related Materials, 10, 1235-1240.
48.Xie, S., Li, W., Pan, Z., Chang, B., & Sun, L. (2000). Self-assembly of shape-controlled nanocrystals and their in-situ thermodynamic properties. Materials Science and Engineering A, 286, 11-15.
49.Chen, X. H., Feng, S. Q., Ding, Y., Peng, J. C., & Chen, Z. Z. (1999). The formation conditions of carbon nanotubes array based on FeNi alloy island films. Thin Solid Films, 339, 6-9.
50.Lee, C. J., Park, J., Kang, S. Y., & Lee, J. H. (2000). Growth of well-aligned carbon nanotubes on a large area of Co-Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition. Chemical Physics Letters, 323, 554-559.
51.Terrones, M. et al., (1998). Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chemical Physics Letters, 285, 299-305.
52.Liang, Q., Li, Q., Chen, D. L., Zhou, D. R., Zhang, B. L., & Yu, Z. L. (2000). Carbon nanotube prepared in the atmosphere of partial oxidation of methane. Chemical Journal of Chinese Universities-Chineses, 21(4), 623-625.
53.Hernadi, K., Fonseca, A., Nagy, J. B., Siska, A., & Kiricsi, I. (2000). Production of nanotubes by the. catalytic decomposition of different carbon-containing compounds. .Applied Catalysis A: General, 199, 245-255.
54.Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., & Wang, G. (1996). Large-scale synthesis of aligned carbon nanotubes. Science, 274, 1701-1703.
55.Pan, Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y., & Wang, G. (1999). Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chemical Physics Letters, 299, 97-102.
56.Li, A. P., Muller, F., Birner, A., Nielsch, K., & Gosele, U. (1998). Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., 84, 6023-6026.
57.Masuda, H., Yamada, H., Satoh, M., & Asoh, H. (1997). Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett., 71, 2770-2772.
58.Masuda, H., & Satoh, M. (1996). Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys., part 2, 35, 126-129.
59.Nolan, P. E., Schabel, M. J., & Lynch, D. C. (1995). Hydrogen control of carbon deposit morphology. Carbon, 33, 79-85.
60.Pinheiro, P., Schouler, M. C., Gadelle, P., Mermoux, M., & Dooryhee, E. (2000). Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts. Carbon, 38(10), 1469-1479.
61.Khassin, A. A., Yurieva, T. M., Zaikovskii, V. I., & Parmon, V. N. (1998). Effect of metallic cobalt particles size on occurrence of CO disproportionation. Role of fluidized metallic cobalt-carbon solution in carbon nanotube formation. Reaction Kinetic and Catalysis Letter, 64, 63-71.
62.Tsai, S. H., Chao, C. W., Lee, C. L., & Shin, H. C. (1999). Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis. Appl. Phys. Lett., 74, 3462-3464.
63.Huang, Z. P., Xu, J. W., Ren, Z. F., Wang, J. H., Siegal, M. P., & Provencio, P. N. (1998). Growth of highly-oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett., 73, 3845-3847.
64.Ren, Z. F., Huang, Z. P., Wang, D. Z., Wen, J. G., Xu, J. W., Wang, J. H., Calvet, L. E., Chen, J., Klemic, J. F., & Reed, M. A. (1999). Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett., 75, 1086-1088.
65.Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. (1999). Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512-514.
66.Kwon, Y. K., Lee, Y. H., Kim, S. G., Jund, P., Tománek, D., & Smalley, R. E. (1997). Morphology and stability of growing multiwall carbon nanotubes. Phys. Rev. Lett., 79, 2065-2068.
67.Oh, D. H., & Lee, Y. H. (1998). Stability and cap formation mechanism of single-walled carbon nanotubes. Phys. Rev. B, 58, 7407-7411.
68.Kuznetsov, V. L., Usoltseva, A. N., Chuvilin, A. L., Obraztsova, E. D. & Bonard, J. M. (2001). Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes. Phys. Rev. B, 64, 235401-1.
69.Jacoby, S. L. S., Kowalik, J. S., & Pizzo, J. T. (1972). Iterative methods for nonlinear optimization problems. Prentice Hall, Inc., Englewood Cliffs, New Jersey, ISBN 0–13–.508199–X, 79-83.
70.Fowler, R. H., & Nordheim, L. W. (1928). Electron emission in intense electric fields. Proceedings of Royal Society of London, 119, 173-181.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔