(3.238.174.50) 您好!臺灣時間:2021/04/20 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃國瑋
研究生(外文):Wayne Huang
論文名稱:高熱傳導石墨膜應用於質子交換膜燃料電池之熱管理研究
論文名稱(外文):Application of High Thermal Conductivity Graphite Sheet on Thermal Management of PEM Fuel Cells
指導教授:溫志湧
指導教授(外文):C.Y.Wen
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:72
中文關鍵詞:質子交換膜燃料電池熱管理高熱傳導石墨膜
外文關鍵詞:PEMFCThermal ManagementHigh Thermal Conductivity Graphite Sheet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:460
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:171
  • 收藏至我的研究室書目清單書目收藏:2
質子交換膜燃料電池的熱管理包括排出電池內部廢熱,避免電池內部呈現熱點而損壞整體燃料電池,保證電池穩定恆溫地運行與提高燃料利用率。而質子交換膜燃料電池組的能量轉換效率在40~60%,因此在運作時,有60~40%的廢熱必須排出,以維持工作溫度恆定。而要製作出高效能燃料電池組,組裝與水熱管理的問題相較於單電池起來便更形複雜與重要。
在燃料電池組熱管理的設計上,目前多以水冷或氣冷循環方式和液體蒸發冷卻來達到散熱目的,但其亦造成冷卻流道的製作成本、氣密問題與電池體積較大的負擔。本研究的新想法為以「高熱傳導石墨膜」材料,應用其高熱傳導率的特性,結合在金屬流道板面上來移除內部廢熱,此應用提供燃料電池熱管理機制另一種選擇。
本研究探討生成水和溫度分佈之關係,主要是因為若陰極過多的生成水會造成水氾濫現象,堵塞氣體的傳輸通道,大幅地降低質傳的極限,造成燃料電池性能下降,若溫度過高則造成質子交換膜乾涸現象。溫度探討部分以熱電偶在預設點做接觸式量測,再配合透明流道觀測生成水分佈,結果顯示,若加入此膜,可有效達到熱移除目的,且總體效能較佳,因此本研究先以單電池為出發點,研究以高熱傳導石墨膜為散熱設計之燃料電池熱管理,以提供後續燃料電池組熱管理設計之最佳化。
Thermal management of a proton exchange membrane fuel cell includes removing waste heat within it in order to avoid non-uniform temperature distribution and utilizing effectively the waste heat. The water and thermal management of a PEMFC stack becomes more complex and important than just a single cell.
In the design of thermal management of a PEMFC stack, the cooling methods include internal water or air circulation and fluid evaporation in present applications. However, there are several subjects to be taken into account, e.g., cost of making cooling channels, sealing and additional volume of the fuel cell stack. In the present study, “high thermal conductivity graphite sheet” is used for cooling in a fuel cell for the first time. It is combined with the metal flow channel plate in the cathode and the graphite sheet protrudes the fuel cell as a fin to remove waste heat.
The relationship of water production and temperature distribution is also studied. If too much water in the diffusive layer of cathode is produced, the flow channel will be flooded, and blocked from conducting the oxidant. On the other hand, if the temperature in a fuel cell is too high, membrane dehydration is occurred, In the study, the thermocouples are used for measuring temperature inside of a single PEMFC. Water production is visualized by a DV. It is shown the PGS can remove waste heat efficiently and improve the performance of the PEMFC. It provides a promising tool for the thermal management of a PEMFC.
目錄
封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 vii
圖目錄 ix
表目錄 xi
符號說明 xii

第一章 前言 1
1.1 燃料電池的歷史與簡介 1
1.2 燃料電池類型 3
1.3 質子交換膜燃料電池原理與構造 4
1.4 文獻回顧 10
1.4.1 性能測試實驗文獻 12
1.4.2 理論模式數值分析文獻 15
1.5 研究動機 22
第二章 研究方法 24
2.1 PEMFC之單電池設計 24
2.2 高熱傳導石墨膜簡介 27
2.3 實驗架構 29
2.3.1 操作條件設定與測試步驟 31
2.3.2 生成水分佈觀測機制 32
2.3.3 PEMFC內部溫度分佈量測機制 33
第三章 結果與討論 36
3.1 水、熱生成之實驗結果 36
3.1.1 水生成觀測探討 38
3.1.2 內部溫度量測結果 39
3.1.3 一維熱傳遞量測 41
3.2 燃料電池熱管理量測結果 43
3.2.1 加入高熱傳導石墨膜之電池性能表現與生 成水分佈 44
3.2.2 加入高熱傳導石墨膜之內部溫度分佈 46
3.2.3 加入高熱傳導石墨膜之一維熱傳遞量測 49
第四章 結論 53
參考文獻 54
[1]S. Miachon and P. Aldebert, “Internal Hydration H2/O2 100 cm2 Polymer Electrolyte Membrane Fuel Cell,” J. Power Sources, Vol. 56, pp. 31-36, 1995

[2]J.H. Lee, T.R. Lalk and A.J. Appleby, “Modeling Electrochemical Performance in Large Scale Proton Exchange Membrane Fuel Cell Stacks,” J. Power Sources, Vol. 70. pp. 258-268, 1998

[3]顏宇欣,“3C 用燃料電池介紹”,工業材料雜誌,169期,pp 142-145., 2001

[4]衣寶廉,“燃料電池原理與應用”,五南出版社,2005

[5]V.A. Paganin, E. A. Ticianelli and E. R. Gonzalez, “Development of Small Polymer Electrolyte Fuel Cell Stacks,” J. Power Sources, Vol. 70, No. 1, pp.55-58, 1998

[6]D. Chu and R. Jiang, “Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stack and Single Cell,” J. Power Sources, Vol. 80, pp.226-234, 1999

[7]R. Jiang and D. Chu, “Stack Design and Performance of Polymer Electrolyte Membrane Fuel Cell,” J. Power Sources, Vol. 93, pp.25-31, 2001

[8]T. Susai, A. Kawakami, A. Hamada, Y. Miyake and Y. Azegami, “Development of a 1 kW Polymer Electrolyte Fuel Cell Power Source,” J. Power Sources, Vol. 92, pp.131-138,2001

[9]X. Ren and S. Gottesfeld, “Electro-osmotic Drag of Water in poly (perfluorosulfonic) Membranes,” J. Electrochemical Society, Vol. 148(1), A87-A93, 2001

[10]D.L. Wood, III, J.S. Yi, and T.V. Nguyen, “Effect of Direct Liquid Water Injection and Interdigitated Flow Field on the Performance of Proton Exchange Membrane Fuel Cells” Electrochemical Acta, Vol. 43, pp. 3795-3809.

[11]K. Tüber., D. Pócza, and Christopher ,“Visualization of water buildup in the cathode of a transparent PEM fuel cell,” J. Power Sources, Vol.124 pp.403–414, 2003

[12]A. Hakenjos, H. Muenter, U. Wittstadt, and C. Hebling, “A PEM Fuel Cell for Combined Measurement of Current and Temperature Distribution, and Flow Field Flooding,” Journal of Power Sources, Vol.131 pp.213–216, 2004

[13]M. Wang, H. Guo and C. Ma, “Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow flow bed,” Journal of Power Sources, Vol.157 pp.181–187, 2006

[14]D.M. Bernardi and M.W. Verbrugge, “Mathematical Model of Gas Diffusion Electrode Bonded to a Polymer Electrolyte,” AICHE Journal, Vol. 37, No. 8, pp. 1151-1163, 1991

[15]T.V. Nguyen and R.E. White, “A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells,” J. Electrochemical Society, Vol. 140, No. 8, pp. 2178-2186, 1993

[16]J. S. Yi and T.V. Nguyen, “An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells,” J. Electrochemical Society, Vol. 145, pp. 1149-1159, 1998.

[17]T.F. Fuller and J.J. Newman, “Water and Thermal Management in Solid-Polymer- Electrolyte Fuel Cells,” J. Electrochemical Society, Vol. 140, No. 5, pp. 1218-1225, 1993

[18]R. Mosdale and S. Srinivasan, “Analysis of Performance and of Water and Thermal Management in Proton Exchange Membrane Fuel Cells,” Electrochimica Acta, Vol. 40, No. 4, pp. 413-421, 1995

[19]C. Marr and X. Li, “An Engineering Model of Proton Exchange Membrane Fuel Cells Performance,” ARI, pp. 190-200, 1998

[20]C. Marr and X. Li, “Composition and Performance Modeling of Catalyst Layer in a Proton Exchange Membrane Fuel Cells,” J. Power Sources, Vol. 77, Issue 1, pp.17-27, 1999

[21]V. Gurau, “ Two-Dimensional Model for Proton Exchange Membrane Fuel Cells,” AICHE Journal, Vol. 44, No. 11, pp. 2410-2422, 1998

[22]T. Okada, X. Gang, and M. Meeg, “Simulation for Water Management in Membranes for Polymer electrolyte Fuel Cells,” Electrochimica Acta, V01. 43, No. 14-15, pp. 2141-2155, 1998

[23]T. Okada, “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells-Part 1 The Effect of Impurity Ions at the Anode Side on the Membrane Performances,” J. Electroanal. Chem., 465, pp. 1-17, 1999

[24]T. Okada, “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells-Part 2 The Effect of Impurity Ions at the Anode Side on the Membrane Performances,” J. Electroanal. Chem., 465, pp. 18-29, 1999

[25]P. Argyroupoulos, K. Scott, and W.M. Taama, “One-Dimensional Thermal Model for Direct Methanol Fuel Cell Stacks Part.1 Model Development,” J. Power Sources, 79, pp. 169-183, 1999

[26]P. Argyroupoulos, K. Scott, and W.M. Taama, “One-Dimensional Thermal Model for Direct Methanol Fuel Cell Stacks Part.2 Model based parametric analysis and predicted temperature profiles” J. Power Sources, 79, pp. 184-198, 1999

[27]葛善海、衣寶廉、徐洪峰,“質子交換膜燃料電池水傳遞模型,Journal of Chemical Engineering,第五十卷, 第一期,1999

[28]J. Baschuk and X. Li, “Modeling of Polymer Electrolyte Membrane Fuel Cells with Variable Degree of Water Flooding,” J. Power Sources, Vol. 86, pp.181-196, 2000

[29]A. Rowe and X. Li, “Mathematical Modeling of Proton Exchange Membrane Fuel Cells,” J. Power Sources, pp. 82-96, 2001

[30]K. Dannenberg, P. Ekdunge and G. Lindbergh, “Mathematical Model of the PEMFC,” J. Applied Electrochemistry, Vol. 30, pp. 1377-1387, 2000

[31]L. R. Jordan, A. K. Shukla, T. Behrsing, N. R. Avery, B. C. Muddle and M. Forsyth, “Diffusion Layer Parameters Influencing Optimal Fuel Cell Performance,” J. Power Sources, Vol. 86, Issue 1/2, pp.250-254, 2000

[32]P. Costamagna, “Transport phenomena in polymeric membrane fuel cells,” Chem Eng Sci, 56(2):323, 2001

[33]T. Berning, D. M. Lu and N. Djilali, “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,” J. Power Sources, pp.284-294, 2002

[34]顏維謀、陳發林、宋齊有等,“Analysis of thermal and water management with temperature-dependent diffusion effects in membrane of proton exchange membrane fuel cells, ” J. Power Sources, Vol.129, pp.127-137, 2004

[35]Y. Shan, Song-Yul Choe, “A high dynamic PEM fuel cell model with temperature effects,” J. Power Sources, 145, pp.30-39, 2005

[36]V. Gurau, H-T. Liu, and S. Kalac, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells,” AIChE Juornal, Vol.44, No.11 pp. 2410-2422, 1998

[37]J.S. Yi and T.V. Ng, “Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cell Using the Interdigitated Gas Distributors”, J. Electrocemical Society, Vol. 146, No. 1, pp. 38-45.

[38]H. Naseri-Neshat, S. Shimpalee, S. Dutta, W-K. Lee, and J.W. Zee, “Predicting the Effect of Gas-Flow Channel Spacing On Current Density in PEM Fuel Cells,” AES-Vol.39, Proceedings of the ASME, Advanced Energy System Division, 1999

[39]S. Shimpalee, S. Dutta, W-K. Lee, and J.W. Zee, “Effect of Humidity on PEM Fuel Cell Performance Part II – Numerical Simulation,” HTD-Vol.364-1, Proceedings of the ASME, Heat Transfer Division, 1999

[40]http://www.beamassociate.com/

[41]Philip L., Hentall J., Barry Lakeman Gary O. Mepsted, et al. “New materials for PEM fuel cell current collectors,” J. Power Sources, 80‧235. , 1999

[42]http://www.ucl.itri.org.tw/research/tech/9/index.html#

[43]http://industrial.panasonic.com/

[44]http://www.fuelcelltestingsystem.com/Products/FCTS.htm

[45]溫志湧、蔡秉蒼,黃國瑋,“質子交換膜燃料電池水氣生成觀測暨組裝界面壓力對性能之影響,中國機械工程學會第二十二屆全國學術研討會論文集,熱傳與能源工程,A8-020,2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔