|
1.李弘斌, “高溫材料之自行燃燒合成反應的參數探討,”行政院國家科學委員會, NSC 85-2216-E-228 – 001, 1996. 2.方建智, 謝誌鴻, 陳建忠. “低溫燃燒合成介金屬之機構探討” 中華民國材料年會, 台北市國立台灣大學, 2002. 3.朱世富 “材料科學與工程,” 新文京開發出版股份有限公司, pp.327-329, 2002. 4.李弘斌, “粉末冶金的新發展-自行燃燒合成反應,”美國辛辛那提大學國際微熱研究中心. 5.K.Morsi., “Review:reaction synthesis processing of Ni-Al inter- metallics materials,” Mater. Sci. Eng., A, Vol.299, pp. 1-15, 2001. 6.M.N. Mungole, R. Balasubramaniam, A. Ghosh., “Oxidation behavior of titanium aluminides of high niobium content,” Intermetallics, Vol. 8, pp. 717-720, 2000. 7.B.M. Warnes., N.S. DuShane, J.E.Cockerill., “Cyclic oxidation of diffusion aluminide coatings on coalt base super alloys,” Surface Coatings Technol., Vol. 148, pp. 163-170, 2001. 8.V. Gauthier, B F. ernard, E. Gaffet, D. Vrel, M. Gailhanou J.P. Larpin, “Investigation of the formation mechanism of nanostructured NbAl3 via MASHS reaction,” Intermetallics, Vol. 10, pp. 377-389, 2002. 9.C. Nishimura, C.T. Liu, “Reaction sintering of Ni3Al to near full density” Scripta Metall. Mater., Vol. 26, pp. 381-385, 1992. 10.Z.A. Munir, U. Anselmi-Tamburini, “Self-propagating exothermic reaction:the synthesis of high-temperature materials by combustion,” Mater. Sci. Rep., Vol. 3, pp. 277-365, 1989. 11.A.G. Merzhanov, “History and recent development in SHS,” Ceram. Int., Vol. 21, pp. 371-379, 1995. 12.J.J. Moore, H.J. Feng, “Combustion synthesis of advanced materials:Part Ⅰ,” Mater. Sci., Vol. 39, pp. 243-273, 1995. 13.P. Mossino, “Some aspects in self-propagating high-temperature synthesis,” Ceram. Int., Vol. 30, pp. 311-332, 2004. 14.P. Zhu, J.C.M. Li, C.T. Liu, “Reaction mechanism of combustion synthesis,” Mater. Sci. Eng. A, Vol. 329, pp. 57-68, 2002. 15.A. Biswas, S.K. Roy, K.R. Gurumurthy, N. Parbhu, and S. Banerjee, “A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode,” Acta. Mater. Vol. 50, pp. 757-773, 2002. 16.李弘斌, “利用固體燃燒的材料製成法:自行傳播燃燒反應,” 1996. 17.J.J. Moore, H.J. Feng, “Combustion Synthesis of Advanced Materials:Part I. Reaction Parameters,”Progress in Mater. Sci., Vol. 39, pp. 243-273, 1995. 18.J.J. Moore, and H.J. Feng, “Combustion Synthesis of Advanced Materials:Part II. Classification, Applications and Modeling,” Progress in Mater. Sci., Vol. 39, pp. 275-316, 1995. 19.Makino, “Fundamental Aspects of the Heterogeneous Flame in the Self-propagating High-temperature Synthesis (SHS)Process,” Progress in Energy and Combust. Sci., Vol. 27, pp. 1-74, 2001. 20.U. Anselmi-Tamburini, F. Maglia, G. Spinolo, S. Doppiu, M. Monagheddu, G. Cocco., “Self-propagating reactions in the system Ti-Si:a SHS-MASHS comparative study, ”J. Mater. Syn. Proc., Vol. 8, pp. 377-383, 2000. 21.C.L. Yeh, C.C. Hsu, “An experimental study on Ti5Si3 formation by combustion synthesis in self-propagating mode,” J Alloys Comp., Vol. 395, pp. 53-58, 2005. 22.J.D. Rigney, P.M. Singh, J.J. Lewandowski, “Environmental Effects on Ductile-Phase Toughening in Nb5Si3-Nb Composites,” J Organomet. Chemie., Vol. 36, pp.36-41, 1992. 23.M.G. Mendiratta, J.J. Lewandowski, D. Dimiduk, “Microstructures and mechanical behavior of two-phase Nb silicide-Nb alloys,” Mater. Res. Soc. Symp. Proc., Vol. 133, pp. 441-446, 1989. 24.M.G. Mendiratta, D.M. Dimiduk, “Phase relations and transformation kinetics in the high Nb region of the Nb-Si system,” Scripta Metall., Vol. 25, pp. 237-242, 1991. 25.J.J. Lewandowski, D. Dimiduk, W.R. Kerr., M.G. Mendiratta, “Microstructural Effects on Nb-Nb Silicide Composite Properties,” Mater. Res. Soc. Symp. Proc., Vol. 120, pp. 103-108, 1990. 26.M.G. Mendiratta, J.J. Lewandowski, D. Dimiduk, “strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys,” Metall. Trans. A., Vol. 22A, pp. 1573-1583, 1991. 27.S. Gedevanishvili, Z.A. Munir, “Field-activated combustion synthesis in the Nb-Si system,” Mater. Sci. Eng. Vol. A211, pp. 1–9, 1996. 28.A.R. Sarkisyan, S.K. Dolukhanyan, I.P. Borovinskaya, “Laws of the combustion of mixtures of transition metals with silicon and the synthesis of silicides,” Combust. Explos. Shock Waves, Vol. 15, pp. 112-115, 1979. 29.M.E. Schlesinger, H. Okamoto, A.B. Gokhale, R. Abbaschian, “The NbSi (Niobium-Silicon) System,” J. Phase Equilib., Vol. 14 pp. 502-509, 1993. 30.A. Feng, Z.A. Munir, “Field-Assisted Self-Propagating Synthesis of -SiC,” J. Appl. Phys., Vol. 76, pp. 1927, 1994. 31.A. Feng, Z.A. Munir, “The effect of an electric field on self-sustaining combustion synthesis part 1:modeling studies,” Metall. Mater. Trans., Vol. 26B, pp. 581-586, 1995. 32.A. Feng, Z.A. Munir, “The effect of an electric field on self-sustaining combustion synthesis part 2:field-assisted synthesis of -SiC,” Metall. Mater. Trans., Vol. 26B, pp. 587-593, 1995. 33.S. Gedevanishvili, Z.A. Munir, “Field-assisted combustion synthesis of MoSi2 ± SiC composites,” Scripta Metall. Mater., Vol. 31, pp. 741, 1994. 34.I.J. Shon, Z.A. Munir, “Synthesis of TiC and TiC-Cu composites and TiC-Cu functionally-graded materials by electothermal combustion,” J. Amer. Ceram. Soc., Vol. 81, pp. 3243, 1998. 35.A.G. Merzhanov, “Solid flames:discovery, concepts and horizons of cognition,” Combust. Sci. Technol. Vol. 98, pp. 307-336, 1994. 36.P. Mossino, “Some aspects in self-propagating high-temperature synthesis,” Ceram. Int. Vol. 30, pp. 311–332, 2004. 37.S. Otani, M.M. Korsukova, T. Mitsuhashi, “Floating zone growth and high-temperature hardness of NbB2 and TaB2 single crystals,” J. Crystal Growth Vol. 194, pp.430-433, 1988. 38.A.G. Merzhanov, I.P. Borovinskaya, “Self-propagating synthesis of high-melting inorganic compounds,” Dokl. Akad. Nauk USSR Vol. 204, pp.366-369, 1972. 39.I.P. Borovinskaya, A.G. Merzhanov, N.P. Novikov, A.K. Filonenko, “Gasless combustion of powder mixtures of the Transition metals with boron,” Combust. Explos. Shock Waves Vol. 10, pp. 2-10, 1974. 40.D.D. Radev, M. Marinov, “Properties of titanium and zirconium diborides obtained by self-propagated high-temperature synthesis,” J. Alloys Compd. Vol. 244, pp. 48-51, 1996. 41.A.A. Zenin, A.G. Merzhanov, G.A. Nersisyan, “The investigation of thermal wave structure in SHS processes on example boride synthesis,” Dokl. Phys. Chem. Vol. 250, pp. 83-87, 1980. 42.A.A. Zenin, A.G. Merzhanov, G.A. Nersisyan, “thermal wave structure in SHS processes by the example of borides synthesis,” Combust. Explos. Shock. Waves Vol. 17, pp. 63-71, 1981. 43.T. Tsuchida, T. Kakuta, “Synthesis of NbC and NbB2 by MA-SHS in air process,” J. Alloys Comp. Vol. 398, pp. 67-73, 2005. 44.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, “Superconductivity at 39K in Magnesium Diboride,” Nature Vol.410, pp.63-64, 2001. 45.I. Zlotnikov, I. Gotman, E.Y. Gutmanas, “Processing of dense bulk MgB2 superconductor via pressure-assisted thermal explosion mode of SHS,” J. Eur. Chem. Soc. Vol.25, pp. 3517-3522, 2005. 46.K. Przybylski, L. Stobierski, J. Chmist, A. Kolodziejczyk, “Synthesis and properties of MgB2 obtained by SHS method,” Physica C Vol. 387, pp. 148-152, 2003. 47.K. Przybylski, J. Chmist, R. Zalecki, A. Kolodziejczyk, “Effect of microstructure on properties of MgB2 synthesized by SHS method,” Physica C Vol. 408-410, pp. 117-119, 2004. 48.H. Takeya, A. Matsumoto, K. Hirata, Y.S. Sung, K. Togano, “Superconducting phase in niobium diborides prepared by combustion synthesis,” Physica C Vol. 412-414, pp. 111-114, 2004. 49.A. Yamamoto, C. Takao, T. Masui, M. Izumi, S. Tajima, “High-pressure synthesis of superconducting Nb1-xB2(x=0-0.48) with the maximum Tc=9.2 K,” Physica C Vol. 383, pp.197–206, 2002. 50.P. de la Mora, M. Castro, G. Tavizon, “Comparative of the electronic structure of alkaline-earth borides (MeB;Me=Mg, Al, Zr, Nb and Ta) and their normal-state conductivity,” J. Solid State Chem. Vol. 169, pp.168-175, 2002. 51.C.A. Nunes, D. Kaczorowski, P. Rogl, M.R. Baldissera, P.A. Suzuki, G.C. Coelho, A. Grytsiv, G. Andre, F. Bouree, S. Okada, “The NbB2-phase revisited:Homogeneity range, defect structure, Superconductivity,” Acta Mater., Vol. 53, pp. 3679-3687, 2005. 52.B.K. Yen, T. Aizawa, J. Kihara, “Synthesis and formation mechanisms of molybdenum silicides by mechanical alloying,” Mater. Sci. Eng., Vol. A220, pp. 8-14, 1996. 53.C.D. Seetharama, N.T. Naresh, “Reaction synthesis of high-temperature silicides,” Mater. Sci. Eng., Vol. A192/193, pp. 8-14, 1996. 54.Ch. Gras, D. Vrel, E. Gaffet, F. Bernard, “Mechanical activation effect on the self-sustaining combustion reaction in the Mo-Si system,” J. Alloys Comp., Vol. 314, pp. 240-250, 2001. 55.S. Zhang, Z.A. Munir, “Synthesis of molybdenum silicides by the self-propagating combustion method,” J. Mater. Sci., Vol. 26, pp. 3685-3688, 1991. 56.J.J. Petrovic, “MoSi2-Base High-Temperature Structural Silicide,” MAS Bull., Vol. XVIII, pp. 35, 1993. 57.J.J. Petrovic, and A.K. Vasudevan, “Overview of high temperature structural silicides,” Mater. Res. Soc. Symp. Proc., Vol. 322, pp. 3, 1994. 58.J.J. Petrovic, A.K. Vasudevan, “A comparative overview of molybdenum disilicide composites,” Mater. Sci. Eng., Vol. A155, pp. 1, 1992. 59.J.J. Petrovic, “Mechanical behavior of MoSi2 and MoSi2 composites,” Mater. Sci. Eng., Vol. A192/193, pp. 31-37, 1995. 60.S.W. Jo, G.W. Lee, J.T. Moon, Y.S. Kim, “On the formation of MoSi2 by self-propagating high-temperature synthesis,” Acta Mater., Vol. 44, pp. 4317-4326, 1996. 61.M. Eslamloo-Grami, and Z.A. Munir, “Effect of Nitrogen Pressure and Diluent Content on the Combustion Synthesis of Titanium Nitride,” J. Amer. Ceram. Soc. Vol. 73, pp. 2222-2227, 1990.
|