跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳偉暉
研究生(外文):Wei-Huei Chen
論文名稱:燃燒合成具多穩定相之金屬矽化物與硼化物
論文名稱(外文):Combustion Synthesis of Multiphase Metal Borides and Silicides
指導教授:葉俊良葉俊良引用關係
指導教授(外文):C.L. Yen
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:89
中文關鍵詞:鈮矽介金屬鈮硼化合物鉬矽介金屬自持傳遞高溫
外文關鍵詞:Nb-SiNb-BMo-SiSelf-propagating High-temperature SynthesisActivation EnergyPreheatingXRD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以自持傳遞高溫合成法(Self-propagating High-temperature Synthesis, SHS),在氬氣環境下進行燃燒合成之鈮矽(Nb-Si)介金屬、鈮硼(Nb-B)化合物以及鉬矽(Mo-Si)介金屬三大部份之實驗研究,並於實驗中觀察各種不同莫爾比、試片密度與預熱溫度對其火焰鋒面傳遞模式、燃燒溫度、火焰鋒面傳遞速度之影響,並且詳細觀察燃燒合成產物與反應物元素當量比之關係。
第一部份觀察各種不同莫爾比之鈮矽介金屬如:Nb3Si、-Nb5Si3、-Nb5Si3與NbSi2,以及複合材料Nb5Si3/Nb組成特性。經由XRD分析其合成結果,在Nb:Si = 5:3其主要生成產物為-Nb5Si3;Nb:Si = 3:2其主要生成產物為-Nb5Si3。而Nb:Si = 1:2除了生成NbSi2介金屬,尚殘留少許未反應之鈮與矽。於實驗中搭配Nb:Si = 3:1發現無法利用此方法引起自持燃燒傳遞,因而不加以探討。而實驗結果顯示出Nb:Si = 5:3其燃燒溫度與火焰鋒面傳遞速度較其餘組態略高許多,並且比較所有組態之燃燒溫度與火焰鋒面傳遞速度有相關一致性。在Nb5Si3/Nb複合材料方面,將鈮粉從5 mol%增加至15 mol%其燃燒溫度與火焰鋒面傳遞速度都會隨著添加強化劑鈮粉的增加而降低,並且經由XRD分析其主要生成產物為-Nb5Si3以及少量未反應鈮粉殘留。根據組態5:3與1:2量測之燃燒溫度與火焰鋒面傳遞速度結果,計算出Nb5Si3與NbSi2介金屬反應活化能約為259.2 kJ/mol與160.8 kJ/mol。
第二部份實驗為觀察各種不同莫爾比之鈮硼化合物組成特性,如:Nb3B2、NbB、Nb5B6、Nb3B4以及NbB2。經由XRD分析發現,組態為1:1與1:2產物轉換率最佳,皆可合成出NbB與NbB2。而組態為3:2、5:6以及3:4則會同時生成兩者或兩者以上之鈮硼化合物(Nb3B4、NbB、NbB2),並由實驗中發現無論搭配任何組成皆無法合成出產物Nb3B2與Nb5B6。接著觀察Nb:B = 3:2燃燒溫度與火焰鋒面傳遞速度偏低的原因,分析後發現是因為在燃燒合成的過程中有大部份未反應的鈮粉殘留。再者,根據組態為1:1與1:2於預熱溫度200℃以上,火焰模式穩定平整的傳遞下,量測之燃燒溫度與火焰鋒面傳遞速度結果,計算出NbB與NbB2反應活化能約為151.8 kJ/mol與132.4 kJ/mol。
第三部份主要是觀察各種不同組態鉬矽介金屬,其中包含Mo3Si、Mo5Si3以及MoSi2。產物合成結果在Mo:Si = 1:2產物轉換率最佳,能夠完美的合成出MoSi2介金屬。而Mo:Si = 3:1與5:3並無法利用此方法引起自持燃燒傳遞,因而不加以探討。於實驗中搭配Mo:Si = 2:3與1:1觀察其燃燒合成產物與反應物元素當量比之關係,其同時生成產物MoSi2與Mo5Si3介金屬以及未反應的鉬粉殘留。實驗結果顯示出Mo:Si = 3:2與1:2火焰鋒面傳遞速度較Mo:Si = 1:1略快,其燃燒溫度也較高。根據組態1:2於實驗中量測之燃燒溫度與火焰鋒面傳遞速度結果,計算出MoSi2介金屬反應活化能約為34.9 kJ/mol。
Formation of niobium silicides (Nb-Si), niobium borides (Nb-B) and molybdenum silicdes (Mo-Si) was investigated by self-propagating high-temperature synthesis (SHS) in this study. Effects of sample green density, preheating temperature, and starting stoichiometry on the combustion characteristics, as well as on the composition of final products were studies.
  In the first part of this study, production of niobium silicides (Nb3Si, -Nb5Si3, -Nb5Si3, and NbSi2) and Nb5Si3/Nb composites was conducted from elemental powder compacts. XRD analysis showed that the compact with a composition of Nb:Si = 5:3 yielded predominantly -Nb5Si3, whereas the sample made up of Nb:Si = 3:2 produced largely -Nb5Si3. The sample of Nb:Si = 1:2 produced NbSi2 with some Nb and Si left unreacted. Experimental observations indicated that except for the sample of Nb:Si = 3:1, upon ignition self-sustained combustion was well established and proceeded throughout the entire sample. Moreover, the reactant compact of Nb:Si = 5:3 had the highest flame-front propagation velocity, followed sequentially by the powder compacts with Nb:Si = 3:2, 1:1, and 1:2. Variation of the combustion temperature with sample initial stoichiometry is in a manner consistent with that of the flame-front velocity. In the synthesis of Nb5Si3/Nb composites, the increase of elemental Nb content in the final composition lowered the combustion temperature and thereby reduced the flame-front velocity. Nb5Si3/Nb composites with the concentration of Nb ranging from 5 to 15 mol.% were produced by SHS in this study. XRD analysis of the Nb5Si3/Nb composite identifies the formation of Nb5Si3 dominated by the form, along with the existence of elemental Nb. Based upon the data measured combustion temperature and combustion wave velocity, the activation energies associated with combustion synthesis of Nb5Si3 and NbSi2 were determined to be 259.2 and 160.8 kJ/mol, respectively.
  In the second part of this study, a comparative study on the preparation of specific niobium borides (including Nb3B2, NbB, Nb5B6, Nb3B4, and NbB2) in the Nb-B system was conducted from elemental powder compacts of their corresponding stoichiometries. Reactant compacts of Nb:B = 1:1 and 1:2 were shown to yield single-phase NbB and NbB2, respectively. In contrast, multiphase products consisting of Nb3B4, NbB, and NbB2 were produced from the powder compacts with Nb:B = 3:2, 3:4 and 5:6. However, it was found that two boride phases Nb3B2 and Nb5B6 did not appear in the end products from any of the reactant compacts. Combustion of the samples with Nb:B = 3:2 was characterized by a localized reaction zone propagating along a spiral trajectory, due largely to the low combustion temperatures which further resulted in a poor degree of phase conversion with a significant amount of Nb left unreacted. Based upon the measured combustion temperature and combustion wave velocity, the activation energies associated with combustion synthesis of NbB and NbB2 were determined to be 151.8 and 132.4 kJ/mol, respectively.
  In the third part of this study, production of molybdenum silicides (Mo3Si, Mo5Si3, and MoSi2) was conducted from elemental powder compacts. Reactant compacts of Mo:Si = 1:2 were shown to yield single-phase MoSi2. However, reactions were extinguished on the compacts of Mo:Si = 3:1 and 5:3. Multiphase products consisting of Mo5Si3, MoSi2 and unreacted Mo were produced from the powder compacts with Mo:Si = 2:3 and 1:1. Measured results showed that the reactant compact of Mo:Si = 1:2 and 2:3 had higher flame-front propagation velocities than that of Mo:Si = 1:1. The activation energy 34.9 kJ/mol was determined for MoSi2.
目錄

封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 vi
誌謝 viii
目錄 x
圖目錄 xii
表目錄 xvi
符號說明 xvii

第一章 緒論 1
1.1 研究背景 1
1.2.1 鈮矽介金屬之相關文獻 5
1.2.2 鈮硼化合物之相關文獻 6
1.2.3 鉬矽介金屬之相關文獻 7
1.3 研究目的 8
第二章 實驗方法與進行步驟 9
2.1 試片 9
2.2 燃燒室主體 10
2.3 資料擷曲系統 10
2.4 影像擷取系統 11
2.5 產物分析 12
第三章 結果與討論 13
3.1 鈮矽介金屬 13
3.1.1 固相火焰觀察 13
3.1.2 燃燒溫度觀察與溫度變化曲線 14
3.1.3 火焰鋒面傳遞速度 16
3.1.4 添加強化劑Nb的影響與活化能之計算 17
3.1.5 產物分析 18
3.2 鈮硼化合物 19
3.2.1 固相火焰觀察 19
3.2.2 燃燒溫度觀察與溫度變化曲線 20
3.2.3 火焰鋒面傳遞速度 21
3.2.4 產物分析與活化能之計算 22
3.3 鉬矽介金屬 23
3.3.1 固相火焰觀察 23
3.3.2 火焰鋒面傳遞速度 24
3.3.3溫度變化曲線 25
3.3.4 產物分析 26
第四章 結論 27
參考文獻 65
1.李弘斌, “高溫材料之自行燃燒合成反應的參數探討,”行政院國家科學委員會, NSC 85-2216-E-228 – 001, 1996.
2.方建智, 謝誌鴻, 陳建忠. “低溫燃燒合成介金屬之機構探討” 中華民國材料年會, 台北市國立台灣大學, 2002.
3.朱世富 “材料科學與工程,” 新文京開發出版股份有限公司, pp.327-329, 2002.
4.李弘斌, “粉末冶金的新發展-自行燃燒合成反應,”美國辛辛那提大學國際微熱研究中心.
5.K.Morsi., “Review:reaction synthesis processing of Ni-Al inter- metallics materials,” Mater. Sci. Eng., A, Vol.299, pp. 1-15, 2001.
6.M.N. Mungole, R. Balasubramaniam, A. Ghosh., “Oxidation behavior of titanium aluminides of high niobium content,” Intermetallics, Vol. 8, pp. 717-720, 2000.
7.B.M. Warnes., N.S. DuShane, J.E.Cockerill., “Cyclic oxidation of diffusion aluminide coatings on coalt base super alloys,” Surface Coatings Technol., Vol. 148, pp. 163-170, 2001.
8.V. Gauthier, B F. ernard, E. Gaffet, D. Vrel, M. Gailhanou J.P. Larpin, “Investigation of the formation mechanism of nanostructured NbAl3 via MASHS reaction,” Intermetallics, Vol. 10, pp. 377-389, 2002.
9.C. Nishimura, C.T. Liu, “Reaction sintering of Ni3Al to near full density” Scripta Metall. Mater., Vol. 26, pp. 381-385, 1992.
10.Z.A. Munir, U. Anselmi-Tamburini, “Self-propagating exothermic reaction:the synthesis of high-temperature materials by combustion,” Mater. Sci. Rep., Vol. 3, pp. 277-365, 1989.
11.A.G. Merzhanov, “History and recent development in SHS,” Ceram. Int., Vol. 21, pp. 371-379, 1995.
12.J.J. Moore, H.J. Feng, “Combustion synthesis of advanced materials:Part Ⅰ,” Mater. Sci., Vol. 39, pp. 243-273, 1995.
13.P. Mossino, “Some aspects in self-propagating high-temperature synthesis,” Ceram. Int., Vol. 30, pp. 311-332, 2004.
14.P. Zhu, J.C.M. Li, C.T. Liu, “Reaction mechanism of combustion synthesis,” Mater. Sci. Eng. A, Vol. 329, pp. 57-68, 2002.
15.A. Biswas, S.K. Roy, K.R. Gurumurthy, N. Parbhu, and S. Banerjee, “A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode,” Acta. Mater. Vol. 50, pp. 757-773, 2002.
16.李弘斌, “利用固體燃燒的材料製成法:自行傳播燃燒反應,” 1996.
17.J.J. Moore, H.J. Feng, “Combustion Synthesis of Advanced Materials:Part I. Reaction Parameters,”Progress in Mater. Sci., Vol. 39, pp. 243-273, 1995.
18.J.J. Moore, and H.J. Feng, “Combustion Synthesis of Advanced Materials:Part II. Classification, Applications and Modeling,” Progress in Mater. Sci., Vol. 39, pp. 275-316, 1995.
19.Makino, “Fundamental Aspects of the Heterogeneous Flame in the Self-propagating High-temperature Synthesis (SHS)Process,” Progress in Energy and Combust. Sci., Vol. 27, pp. 1-74, 2001.
20.U. Anselmi-Tamburini, F. Maglia, G. Spinolo, S. Doppiu, M. Monagheddu, G. Cocco., “Self-propagating reactions in the system Ti-Si:a SHS-MASHS comparative study, ”J. Mater. Syn. Proc., Vol. 8, pp. 377-383, 2000.
21.C.L. Yeh, C.C. Hsu, “An experimental study on Ti5Si3 formation by combustion synthesis in self-propagating mode,” J Alloys Comp., Vol. 395, pp. 53-58, 2005.
22.J.D. Rigney, P.M. Singh, J.J. Lewandowski, “Environmental Effects on Ductile-Phase Toughening in Nb5Si3-Nb Composites,” J Organomet. Chemie., Vol. 36, pp.36-41, 1992.
23.M.G. Mendiratta, J.J. Lewandowski, D. Dimiduk, “Microstructures and mechanical behavior of two-phase Nb silicide-Nb alloys,” Mater. Res. Soc. Symp. Proc., Vol. 133, pp. 441-446, 1989.
24.M.G. Mendiratta, D.M. Dimiduk, “Phase relations and transformation kinetics in the high Nb region of the Nb-Si system,” Scripta Metall., Vol. 25, pp. 237-242, 1991.
25.J.J. Lewandowski, D. Dimiduk, W.R. Kerr., M.G. Mendiratta, “Microstructural Effects on Nb-Nb Silicide Composite Properties,” Mater. Res. Soc. Symp. Proc., Vol. 120, pp. 103-108, 1990.
26.M.G. Mendiratta, J.J. Lewandowski, D. Dimiduk, “strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys,” Metall. Trans. A., Vol. 22A, pp. 1573-1583, 1991.
27.S. Gedevanishvili, Z.A. Munir, “Field-activated combustion synthesis in the Nb-Si system,” Mater. Sci. Eng. Vol. A211, pp. 1–9, 1996.
28.A.R. Sarkisyan, S.K. Dolukhanyan, I.P. Borovinskaya, “Laws of the combustion of mixtures of transition metals with silicon and the synthesis of silicides,” Combust. Explos. Shock Waves, Vol. 15, pp. 112-115, 1979.
29.M.E. Schlesinger, H. Okamoto, A.B. Gokhale, R. Abbaschian, “The NbSi (Niobium-Silicon) System,” J. Phase Equilib., Vol. 14 pp. 502-509, 1993.
30.A. Feng, Z.A. Munir, “Field-Assisted Self-Propagating Synthesis of -SiC,” J. Appl. Phys., Vol. 76, pp. 1927, 1994.
31.A. Feng, Z.A. Munir, “The effect of an electric field on self-sustaining combustion synthesis part 1:modeling studies,” Metall. Mater. Trans., Vol. 26B, pp. 581-586, 1995.
32.A. Feng, Z.A. Munir, “The effect of an electric field on self-sustaining combustion synthesis part 2:field-assisted synthesis of -SiC,” Metall. Mater. Trans., Vol. 26B, pp. 587-593, 1995.
33.S. Gedevanishvili, Z.A. Munir, “Field-assisted combustion synthesis of MoSi2 ± SiC composites,” Scripta Metall. Mater., Vol. 31, pp. 741, 1994.
34.I.J. Shon, Z.A. Munir, “Synthesis of TiC and TiC-Cu composites and TiC-Cu functionally-graded materials by electothermal combustion,” J. Amer. Ceram. Soc., Vol. 81, pp. 3243, 1998.
35.A.G. Merzhanov, “Solid flames:discovery, concepts and horizons of cognition,” Combust. Sci. Technol. Vol. 98, pp. 307-336, 1994.
36.P. Mossino, “Some aspects in self-propagating high-temperature synthesis,” Ceram. Int. Vol. 30, pp. 311–332, 2004.
37.S. Otani, M.M. Korsukova, T. Mitsuhashi, “Floating zone growth and high-temperature hardness of NbB2 and TaB2 single crystals,” J. Crystal Growth Vol. 194, pp.430-433, 1988.
38.A.G. Merzhanov, I.P. Borovinskaya, “Self-propagating synthesis of high-melting inorganic compounds,” Dokl. Akad. Nauk USSR Vol. 204, pp.366-369, 1972.
39.I.P. Borovinskaya, A.G. Merzhanov, N.P. Novikov, A.K. Filonenko, “Gasless combustion of powder mixtures of the Transition metals with boron,” Combust. Explos. Shock Waves Vol. 10, pp. 2-10, 1974.
40.D.D. Radev, M. Marinov, “Properties of titanium and zirconium diborides obtained by self-propagated high-temperature synthesis,” J. Alloys Compd. Vol. 244, pp. 48-51, 1996.
41.A.A. Zenin, A.G. Merzhanov, G.A. Nersisyan, “The investigation of thermal wave structure in SHS processes on example boride synthesis,” Dokl. Phys. Chem. Vol. 250, pp. 83-87, 1980.
42.A.A. Zenin, A.G. Merzhanov, G.A. Nersisyan, “thermal wave structure in SHS processes by the example of borides synthesis,” Combust. Explos. Shock. Waves Vol. 17, pp. 63-71, 1981.
43.T. Tsuchida, T. Kakuta, “Synthesis of NbC and NbB2 by MA-SHS in air process,” J. Alloys Comp. Vol. 398, pp. 67-73, 2005.
44.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, “Superconductivity at 39K in Magnesium Diboride,” Nature Vol.410, pp.63-64, 2001.
45.I. Zlotnikov, I. Gotman, E.Y. Gutmanas, “Processing of dense bulk MgB2 superconductor via pressure-assisted thermal explosion mode of SHS,” J. Eur. Chem. Soc. Vol.25, pp. 3517-3522, 2005.
46.K. Przybylski, L. Stobierski, J. Chmist, A. Kolodziejczyk, “Synthesis and properties of MgB2 obtained by SHS method,” Physica C Vol. 387, pp. 148-152, 2003.
47.K. Przybylski, J. Chmist, R. Zalecki, A. Kolodziejczyk, “Effect of microstructure on properties of MgB2 synthesized by SHS method,” Physica C Vol. 408-410, pp. 117-119, 2004.
48.H. Takeya, A. Matsumoto, K. Hirata, Y.S. Sung, K. Togano, “Superconducting phase in niobium diborides prepared by combustion synthesis,” Physica C Vol. 412-414, pp. 111-114, 2004.
49.A. Yamamoto, C. Takao, T. Masui, M. Izumi, S. Tajima, “High-pressure synthesis of superconducting Nb1-xB2(x=0-0.48) with the maximum Tc=9.2 K,” Physica C Vol. 383, pp.197–206, 2002.
50.P. de la Mora, M. Castro, G. Tavizon, “Comparative of the electronic structure of alkaline-earth borides (MeB;Me=Mg, Al, Zr, Nb and Ta) and their normal-state conductivity,” J. Solid State Chem. Vol. 169, pp.168-175, 2002.
51.C.A. Nunes, D. Kaczorowski, P. Rogl, M.R. Baldissera, P.A. Suzuki, G.C. Coelho, A. Grytsiv, G. Andre, F. Bouree, S. Okada, “The NbB2-phase revisited:Homogeneity range, defect structure, Superconductivity,” Acta Mater., Vol. 53, pp. 3679-3687, 2005.
52.B.K. Yen, T. Aizawa, J. Kihara, “Synthesis and formation mechanisms of molybdenum silicides by mechanical alloying,” Mater. Sci. Eng., Vol. A220, pp. 8-14, 1996.
53.C.D. Seetharama, N.T. Naresh, “Reaction synthesis of high-temperature silicides,” Mater. Sci. Eng., Vol. A192/193, pp. 8-14, 1996.
54.Ch. Gras, D. Vrel, E. Gaffet, F. Bernard, “Mechanical activation effect on the self-sustaining combustion reaction in the Mo-Si system,” J. Alloys Comp., Vol. 314, pp. 240-250, 2001.
55.S. Zhang, Z.A. Munir, “Synthesis of molybdenum silicides by the self-propagating combustion method,” J. Mater. Sci., Vol. 26, pp. 3685-3688, 1991.
56.J.J. Petrovic, “MoSi2-Base High-Temperature Structural Silicide,” MAS Bull., Vol. XVIII, pp. 35, 1993.
57.J.J. Petrovic, and A.K. Vasudevan, “Overview of high temperature structural silicides,” Mater. Res. Soc. Symp. Proc., Vol. 322, pp. 3, 1994.
58.J.J. Petrovic, A.K. Vasudevan, “A comparative overview of molybdenum disilicide composites,” Mater. Sci. Eng., Vol. A155, pp. 1, 1992.
59.J.J. Petrovic, “Mechanical behavior of MoSi2 and MoSi2 composites,” Mater. Sci. Eng., Vol. A192/193, pp. 31-37, 1995.
60.S.W. Jo, G.W. Lee, J.T. Moon, Y.S. Kim, “On the formation of MoSi2 by self-propagating high-temperature synthesis,” Acta Mater., Vol. 44, pp. 4317-4326, 1996.
61.M. Eslamloo-Grami, and Z.A. Munir, “Effect of Nitrogen Pressure and Diluent Content on the Combustion Synthesis of Titanium Nitride,” J. Amer. Ceram. Soc. Vol. 73, pp. 2222-2227, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top