跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張順富
研究生(外文):Shun-Fu Chang
論文名稱:利用成對相互衝射膜冷卻流在靜葉片通道端壁之熱傳與有效性的實驗研究
論文名稱(外文):An Experimental Study of Heat Transfer and Effectiveness on the Endwall of a Vane Passage Using Paired Film Cooling Flow Impinging to Each Other
指導教授:吳佩學
指導教授(外文):Pey-Shey Wu
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:102
中文關鍵詞: 偏位噴注 端壁 膜冷卻有效性 熱傳係數 液晶熱像法
外文關鍵詞:offset impinging cooling jetsendwallfilm cooling effectivenessliquid crystal thermography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討一個新的膜冷卻技術及其應用於保護葉片通道端壁的可行性。此技術乃利用偏位噴注對撞使形成比較聚集且均勻的膜冷卻有效性分佈。實驗結果與平行噴注的膜冷卻設計在相同流量、端壁進口條件、與吹氣比下做優劣比較。本實驗利用靜葉端壁之膜冷卻作測試,採用液晶熱像法,量測端壁之局部熱傳係數及膜冷卻有效性分佈。實驗皆固定主流雷諾數在 ,吹氣比為0.5、1.0、2.0,葉片前端之底板進口情形分為平滑進口、前向進口台階、與背向進口台階等三種。
  結果顯示,端壁熱傳係數之分佈樣式會受到膜冷卻孔排列方式改變,但其值變化不大。在膜冷卻方面,以偏位對撞噴注的膜冷卻技術涵蓋的區域延伸較常,冷卻保護區域向吸力面偏移,而且受到吹氣比與進口台階條件的影響較小,優於平行噴注的膜冷卻設計。
This research concerns about a new film cooling technique and the feasibility of its application to the protection of the endwall in a vane passage. This new technique utilizes pairs of coolant jets impinging against each other to form more aggregated and more uniform distribution of the film cooling effectiveness. The experimental results by using this technique are compared to those with parallel jets at the same coolant flow rate, endwall entrance condition, and the blowing ratio. In the experiments, the endwall of a vane passage was tested. Liquid crystal thermography was employed to measuring the distributions of local heat transfer coefficient(HTC)and film cooling effectiveness. The Reynolds number of the main flow was fixed at . The blowing ratio was set be 0.5, 1.0, 2.0. The investigated entrance conditions include a smooth endwall, an endwall with a forward-facing entrance step, and an endwall with a backward-facing step.
  Results show that the pattern of the HTC distribution could be altered by the overall arrangement of the cooling holes. However, the HTC values did not change much. In the case of film cooling, the new technique with offset impinging cooling jets provides longer coverage area by the coolant, and the protected region is shifted towards the suction wall. This new technique is less sensitive to the blowing ratio and the entrance condition of the endwall compared to the design with parallel coolant jets. Hence, it is a better technique.
封面內頁
簽名頁
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xv
符號說明 xvi

第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 5
第二章 國內外相關研究 6
2.1 端壁區域三維流場 6
2.2 端壁區域熱傳與膜冷卻 10
第三章 研究方法與進行的步驟 13
3.1 實驗系統與測試段 13
3.1.1 雙半葉片模型與測試段底板之設計 13
3.1.2 進口台階之設計 14
3.1.3 雙半葉片模型側邊間隙大小之決定 15
3.2 實驗儀器校正 15
3.2.1 熱偶校正 15
3.2.2 Hot wire校正 16
3.2.3 風洞品質鑑定 18
3.2.4 風洞紊流強度場 19
3.2.5 液晶校正 20
3.3 數據化約基本理論 20
3.3.1 暫態液晶實驗求解熱傳係數 20
3.3.2 穩態液晶實驗求解膜冷卻有效性 22
3.4 實驗條件與實驗程序 22
3.4.1 暫態熱傳液晶實驗條件與程序 22
3.4.2 穩態膜冷卻液晶實驗條件與程序 23
3.5 影像擷取系統與影像處理程序 23
3.5.1 影像擷取系統 23
3.5.2 暫態液晶實驗影像處理程序 24
3.5.3 穩態液晶實驗影像處理程序 24
3.6 數據化約流程 24
3.6.1 暫態液晶實驗數據化約流程 25
3.6.2 穩態液晶實驗數據化約流程 25
第四章 結果與討論 26
4.1 端壁熱傳係數實驗結果 26
4.1.1 底板(一)熱傳係數實驗結果 26
4.1.2 底板(二)熱傳係數實驗結果 27
4.1.3 底板(一)與底板(二)熱傳係數之比較 28
4.2 端壁膜冷卻有效性實驗結果 29
4.2.1 底板(一)膜冷卻有效性實驗結果 30
4.2.2 底板(二)膜冷卻有效性實驗結果 32
4.2.3 底板(ㄧ)與底板(二)膜冷卻有效性之比較 34
第五章 結論 35
參考文獻 98
【1】Wang, H.P., Olson, S.J., Goldstein., R.J., and Eckert E.R.G., “Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades,” Journal of Turbomachinery, Vol. 119, pp.1-8, 1997.
【2】Langston, L.S., “Crossflow in A turbine Cascade Passage,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 109, pp. 866-874,1980.
【3】Sharma, O.P., and Butler, T.L. “Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades,” Journal of Turbomachinery, Vol. 109, pp. 229-236,1987.
【4】Goldstein, R.J., and Spores, R.A., “Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades,” Journal of Heat Transfer, Vol. 110, pp.862-869, 1988.
【5】Sieverding, C.H., and Van Den Bosche, P., “The use of Coloured Smoke to ,” J. Fluid Mech, Vol. 134, pp. 85-89, 1983.
【6】吳佩學、鐘道雄、謝佳佑, “靜葉片端壁區域流場受背向進口台階影響之可是話觀察” , 中國機械工程學會第二十屆全國學術研討會, Paper 10659, 2003.
【7】Chung, J.T., and Simon, T.W., “Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine:Visualization in a Large-Scale Casade Simulator,” ASME paper 90-WA/HT-4, 1990.
【8】Chung, J.T., Simon, T.W., and Buddhavarapu, J., “Three-Dimension Flow Near the Blade/Endwall Junction of a Gas Turbine:Application of a Boundary Layer Fence,” ASME paper 91-GT-45, 1991.
【9】Graziani, R.A., Blair, M.F., Taylor, J.R., and Mayle, R.E., “An Experimental study of Endwall and Airfoil Surface Heat Transfer in A large Scale Turbine Blade Cascade,” ASME Journal of Exgineering for Gas Turbines and Power, Vol. 102, pp. 257-267, 1980.
【10】Krishnamoorthy, V., Pai, B.R., and Sukhatme, S.P., “Influence of Upstrean Flow Conditions on the Heat Transfer to Nozzle Guide Vanes,” Journal of Turbomachinery, Vol. 110, pp. 412-416, 1988.
【11】Wanda Jiang, H. and Han, J.C., ”Effect of film Hloe Row Location on Film Effectiveness on Gas Turbine Blade,” Journal of Heat Transfer, Vol. 118, pp.327-333., 1996.
【12】Cho, H.H. and Goldsein, R.J., ”Heat(Mass)Transfer and Film Cooling Effectiveness With Injection Through Discrete Hole:Part I-Within Holes and on the Back Sucface,” Jouranl of Turbomachinery, Vol. 117,pp.440-450. , 1995.
【13】Cho, H.H. and Goldstein, R.J., ”Heat(mass)Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes:Part II-On the Exposed Surface,” Journal of Turbomachinery, Vol. 117, pp.451-460., 1995.
【14】Vedula, R.J. and Metzger, D.E, “A Method for The Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three-Temperature Convection Situations,” ASME 91-GT-345, pp.1-9., 1991.
【15】Takeishi, K., Matsuura, M., Aoki, S., Sato, T, “An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles,” ASME Journal of Turbomachinery, Vol. 112, pp.488-496.,1990.
【16】Ekkad, S. V., Zapata, D., Han, J. C., 1997, “Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Methok,” ASME Journal of Turbomachinery, Vol. 119, pp.587-593.
【17】Ekkad, S. V., Zapata, D., Han, J. C., 1997, “Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method,” ASME Journal of Turbomachinery, Vol. 119, pp580-586.
【18】Friedrichs, S., Hodson, H.P., and Dawes, W.N., 1995, “Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique,” presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas, USA-Jnue 5-8, 1995.
【19】Gillespie, D.R.H., Byerley, A.R., Ireland, P.T., and Topy Kohler, S., “Detailed Measurement of Local Heat Transfer Coefficient in the Entrance to Normal and Inclined Film Cooling Holes ,” ASME 94-GT-1, pp.1-8., 1994.
【20】Goldstein, R.J. and Chen, H.P., “Film Cooling on A Gas Turbine Blade Near The Endwall,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 107, pp.117-120., 1985.
【21】Goldstein, R.J. and Chen, H.P., “Film Cooling of A Turbine Blade with Injection Through Two Rows of Holes in The Near-Endwall Region,” ASME Journal of Turbomachinery, Vol. 109, pp.588-593., 1987.
【22】Takeishi, K., Matsuura, M., Aoki, S., and Sato, Ti., “An Experimental study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles,” J. of Turbomachinery, Vol. 112, pp.488-796, 1990.
【23】Wilfert, G. and Fottner, L, “The Aerodynamic Mixing Effect of Discrete Cooling Jets with Mainstream Flow on A Highly Loaded Turbine Blade,” ASME J. of Turbomachinery, Vol. 118, pp.468-478., 1996.
【24】Du, H., Ekkad, S., Han, J.-C., “Effect of Unsteady Wale With Trailing Edge Cooling Ejection on Detailed Heat Transfer Coefficient Distribution for a Gas Turbine Blade,” ASME Journal of Turbomachinery, Vol. 119. pp.242-248., 1997.
【25】Hale, C. A., Plesniak, M. W., and Ramadhyani, S., “Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum,” ASME Journal of Turbomachinery, Vol. 122, pp.553-557., 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top