(3.238.240.197) 您好!臺灣時間:2021/04/12 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉二瑋
研究生(外文):Liu Erh Wei
論文名稱:探討反應模式與反應物熔點對燃燒合成金屬氮化物∕碳化物之研究
論文名稱(外文):Effects of Reaction Modes and Melting Point of Reactants on Combustion Synthesis of Metal Nitrides and Carbides
指導教授:葉俊良葉俊良引用關係
指導教授(外文):C.L. Yeh
學位類別:碩士
校院名稱:大葉大學
系所名稱:機械工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:自持傳遞高溫合成法反應模式固相-氣相之燃燒反應固相-固相之燃燒反應同時進行固相-固相與固相-氣相之燃燒反應反應物熔點
外文關鍵詞:Self-propagating high temperature synthesis (SHS)Reaction modeSolid/gas SHSSolid/solid SHSSimultaneous solid/solid /gas SHS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究是以自持傳遞高溫合成法(Self-propagating High temperature Synthesis, SHS)探討在不同之反應模式下,所合成之金屬氮化物與碳化物。由於反應物反應形式之不同,所得之產物與結果則有所差異,因此本實驗中所探討之反應模式,乃以反應物進行反應之形式區分,主要為固相-氣相之燃燒反應、固相-固相之燃燒反應,以及同時進行固相-固相與固相-氣相之燃燒反應,並於此三種反應模式中特別針對其火焰鋒面傳遞模式、火焰鋒面傳遞速度及燃燒溫度變化等燃燒特性加以觀察,並於固相-氣相反應模式中研究試片密度、預熱溫度、稀釋劑含量及氮氣壓力對於火焰傳遞速度與產物轉換率之影響;在固相-固相反應模式中則探討試片密度、預熱溫度、稀釋劑含量對於產物組成之影響;而同時進行固相-固相與固相-氣相反應模式中,則是改變金屬粉末與碳粉末之混合比以合成不同[C]/([C]+[N])函數比之金屬碳氮化物,最後再將實驗所得之產物進行產物顯微結構之觀察與成份分析。在固相-氣相之燃燒反應中,分別以鉭及鋁為反應物,於0.274~4.238MPa之氮氣環境下燃燒合成金屬氮化物,由於鉭之熔點甚高,因此利用低熔點之鋁作為反應物,以探討反應物熔點對於固相-氣相燃燒反應之影響,實驗結果顯示,在固相-氣相燃燒反應過程中,均有出現二次燃燒現象,而由於鋁之熔點較低,因此在反應過程中明顯熔化變形,由於反應需外部氮氣滲透參與反應,因此試片密度與氮氣壓力則為固相-氣相反應中之重要參數,降低試片密度與提高氮氣壓力均可有效提升產物之氮化率,而氮-鋁反應時易因高溫熔化,故需添加稀釋劑來加以改善,當稀釋劑含量為50wt%時,則可有效防止試片熔化而使產物氮化率提升。而固相-固相之反應模式則是將鉭與碳於氬氣中形成碳化鉭,實驗結果顯示可合成出TaC與Ta2C兩種產物,藉由熱電偶所量測之反應溫度約介於1700~1800oC之間,而產物TaC外觀上則明顯膨脹且有明顯裂痕,經成分分析後可知產物中會有少許鉭殘留,而產物Ta2C中則有生成少許TaC,只需提高產物密度即可改善,而藉由火焰鋒面傳遞速度與反應溫度,可計算出碳-鉭反應之活化能分別為TaC:187.42及Ta2C:298.97 kJ/mole。而將鉭與碳置於氮氣中燃燒,即可同時進行固相-固相與固相-氣相反應而生成碳氮化鉭,而碳含量與氮氣壓力則為影響反應之最主要參數,增加氮氣壓力則可使產物氮化率提升,含碳量越高時越不容易發生二次燃燒,而產物分析中發現,所得之產物均有鉭殘留,且含碳量較低之產物易有中間產物Ta2N生成。
An experimental study on different reaction modes of self-propagating high temperature synthesis (SHS) was investigated to prepare metal nitrides, carbides, and carbonitrides. Three different modes of SHS reactions were studied, including solid/gas, solid/solid, and simultaneous solid/solid/gas synthesis reactions. In this study, the propagation of the self-sustained flame front was observed and the flame front velocity and combustion temperature were measured. Different experimental variables were examined and discussed for different SHS reactions.
In the solid/gas combustion reactions, tantalum nitride (TaN) was prepared from tantalum (Ta) powder compacts in gaseous nitrogen, and the result showed that sample density and nitrogen pressure were important parameters. Lower density and higher pressure can increase the degree of conversion. Besides, the melting point of reactant was also important to solid/gas combustion reactions. In order to demonstrate the influence of melting point on the reaction, aluminum (Al) powder compacts was used to synthesize aluminum nitride in nitrogen to compare with the case of tantalum which has a high melting point of 2996 oC. Because the melting point of aluminum (660oC) was lower than combustion temperature (1600~1800 oC), the addition of diluent was required in order to prevent the melting of samples and to achieve a high extent of conversion.
In the solid/solid combustion reactions, tantalum carbides were prepared from tantalum/carbon powder compacts in argon. Results indicated that the different molar ratios of Ta:C = 1:1 and 2:1 produced two kinds of carbides TaC and Ta2C, and an increase in the sample density enhanced the degree of conversion of the product. The activation energies of SHS processes associated with TaC and Ta2C systems were determined to be 187.42 and 298.97 kJ/mole, respectively, based upon the measurement of flame-front velocity and combustion temperature.
Simultaneous solid/solid/gas combustion reactions conducted in this study produced tantalum carbonitrides Ta(C,N) from the compacts of tantalum and carbon powder mixtures under nitrogen pressures. Results indicated that the carbon content and nitrogen pressure were important parameters. Higher nitrogen pressure can increase the degree of conversion. X-ray diffraction (XRD) analysis indicated the existence of a small amount of unreacted Ta in the final products, and the presence of negligible Ta2N under the condition with a low content of carbon.
目錄

授權書 iii
中文摘要 iv
英文摘要 vi
誌謝 viii
目錄 ix
圖目錄 xii
符號說明 xvii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1固相燃燒合成之相關文獻 2
1.2.2氮化鉭之相關文獻 3
1.2.3碳氮化鉭之相關文獻 3
1.2.4碳化鉭之相關文獻 4
1.2.5氮化鋁之相關文獻 5
1.3 研究目的 6
第二章 實驗方法 8
2.1 試片 8
2.2 燃燒室主體 9
2.3 資料擷取系統 10
2.4 影像擷取系統 10
2.5 產物分析 11
第三章 固相-氣相反應模式 12
3.1 氮化鉭 12
3.1.1火焰傳遞模式之觀察 12
3.1.2 火焰鋒面傳遞速度 13
3.1.3 溫度量測 14
3.1.4 產物分析 14
3.2 氮化鋁 16
3.2.1火焰傳遞模式之觀察 16
3.2.2 火焰傳遞速度 17
3.2.3 溫度量測 17
3.2.4 產物分析 18
第四章 固相-固相反應模式 21
4.1 碳化鉭 21
4.1.1 火焰傳遞模式之觀察 21
4.1.2 火焰傳遞速度 22
4.1.3 溫度量測與活化能計算 23
4.1.4 產物分析 24
第五章 固相-固相/固相-氣相反應模式 25
5.1 碳氮化鉭 25
5.1.1 火焰傳遞模式之觀察 25
5.1.2 火焰傳遞速度 26
5.1.3 溫度量測 27
5.1.4 產物分析 28
第六章 結論 30
參考文獻 34
1.Merzhanov, A. G., “Solid Flames: Discoveries, Concepts, and Horizons of Cognition,” Combustion Science and Technology, Vol. 98, pp. 307-336, 1994.
2.Moore, J. J., and Feng, H. J., “Combustion Synthesis of Advanced Materials: Part I. Reaction Parameters,” Progress in Materials Science, Vol. 39, pp. 243-273, 1995.
3.Moore, J. J., and Feng, H. J., “Combustion Synthesis of Advanced Materials: Part II. Classification, Applications and Modeling,” Progress in Materials Science, Vol. 39, pp. 275-316, 1995.
4.Makino, A., “Fundamental Aspects of the Heterogeneous Flame in the Self-propagating High-temperature Synthesis (SHS) Process,” Progress in Energy and Combustion Science, Vol. 27, pp. 1-74, 2001.
5.H. Kudo, O. Odawara, “Characteristics of Self-Propagating Reaction in TiN Combustion Synthesis,” J. Mater. Sci., 24, pp. 4030-4033, 1989.
6.Yeh, C. L. and Chuang, H. C., “Combustion Characteristics of SHS Process of Titanium Nitride with TiN Dilution,” Ceramics International, Vol. 30, No. 5, pp. 705-714, June, 2004.
7.Merzhannov, A. G. and Borovinskaya, I. P., “Self-Propagation High-Temperature Synthesis of Refractory Inorganic Compounds,” Doklady Akademii Nauk USSK, Vol. 204, No. 2, pp. 366-369, 1972.
8.Karen Holloway, Peter M. Fryer, Cyril Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, ”Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions” Journal of Applied Physics, June 1, Volume 71, Issue 11, pp. 5433-5444, 1992.
9.Kyung-Hoon Min, Kyu-Chang Chun, and Ki-Bum Kim, "Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization" Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Volume 14, Issue 5, pp. 3263-3269, September 1996.
10.Leng, Y. X., Sun, H., Yang, P., Chen, J. Y., Wang, J., Wan, G. J., Huang, N., Tian, X. B., Wang, L. P., and Chu, P. K., Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering, Thin Solid Films,398,471-475, 2001.
11.Agrafiotis, C. C., Puszynski, J. A., and Hlavacek, V., “Experimental Study on the Synthesis of Titanium and Tantalum Nitrides in the Self-Propagating Regime,” Combust. Sci. Technol., 76, pp. 187-218, 1991.
12.Khyzhun Yu., Kolyagin V.A., Electronic structure of cubic and rhombohedral tantalum carbonitrides studied by XPS, XES, and XAS methods, J. Electron Spectrosc. Relat. Phenom. 137–140, pp. 463–467, 2004.
13.P. Huber, D. Manova, S. B. Mändl, ”Rauschenbach, Formation of TiN, TiC and TiCN by metal plasma immersion ion implantation and deposition,” Surf. Coatings Technol., 174-175, pp. 1243-1247, 2003.
14.J. B. Holt, Z. A. Munir, “Combustion synthesis of titanium carbide : theory and experiment,” J. Mater. Sci., 21, pp. 251-259, 1986.
15.M. Eslamloo-Grami, Z. Munir, “Effect of Porosity on the Combustion Synthesis of Titanium Nitride,” J. Am. Ceram. Soc., 73(5), pp. 1235-1239, 1990.
16.M. Eslamloo-Grami, Z.A. Munir, “Effect of Nitrogen Pressure and Diluent Content on the Combustion Synthesis of Titanium Nitride,” J. Am. Ceram. Soc., 73, No. 5 , pp. 2222-2227, 1990.
17.C. C. Agrafiotis, J. A. Puszynski and V. Hlavacek, “Experimental Study on the Synthesis of Titanium and Tantalum Nitrides in the Self-Propagation Regime” Comb. Sci. Technol., Vol. 76, pp. 187-218, 1991.
18.M. Eslamloo-Grami, Z.A. Munir, “The mechanism of combustion synthesis of titanium carbonitride,” J. Mater. Res., 9(2), pp. 431-435, 1994.
19.A.B. Avakyan, A.R. Bagramyan, I.P. Borovinskaya, S.L. Grigoryan, A.G. Merzhanov, in: A.G. Merzhanov (Ed.), “Processes of Burning in Chemical Technology and Metallurgy”, Institute of Chemical Physics of the USSR, Chernogolovka, pp. 98, in Russian, 1975.
20.E.M. Gololobov, V.B. Shipilo, N.I. Sedrenok, A.I. Dudyak, Patent USSR No. 722341, dated 21 November 1979.
21.E.M. Gololobov, N.I. Sedrenok, in: Nitrides: Manufacturing, Properties and Applications, Vol. Vol. 1, Zinatne, Riga, pp. 87, 1984.,
22.E.M. Gololobov, N.I. Sedrenok, N.A. Prytkova, Cryogenic Materials and their Welding, Naukova Dumka, Kiev, 1989.
23.O.Yu. Khyzhun, V.A. Kolyagin, X-Ray photoelectron and emission spectra of cubic and rhombohedral tantalum carbonitrides, Journal of Alloys and Compounds 363, pp. 32–39, 2004.
24.Chen, Y.-J., Li, J.-B., Wei, Q.-M., Zhai, H.-Z., "Preparation of different morphology of TaCx whiskers" Materials Letters 56 (3), pp. 279-283, 2002.
25.A. L. Giorgi, E. G. Szklarz, E. K. Storms, Allen L. Bowman, and B. T. Matthias,”Effect of Composition on Superconducting Transition Temperature of Tantalum Carbide and Niobium Carbide” Physical Review, Vol.125 Num.3, 1962.
26.Pedro Miguel Amaral, Jorge Cruz Fernandes, Luís Guerra Rosa, Diego Martínez, José Rodríguez, Nobumitsu Shohoji, “Carbide formation of Va-group metals (V, Nb and Ta) in a solar furnace” International Journal of Refractory Metals & Hard Materials, 18 pp. 47-53, 2000.
27.Cruz Fernandes J, Amaral PM, Guerra Rosa L, Martínez D, Rodríguez J, Shohoji N., “X-ray diffraction characterisation of carbide and carbonitride of Ti and Zr prepared through reaction between metal powders and carbon powders (graphitic or amorphous) in a solar furnace” International Journal of Refractory Metals and Hard Materials, Vol: 17, Issue: 6, November, pp. 437-443, 1999.
28.V. M. Shkiro, G. A. Nersisyan and I. P. Borovinskaya, "Principles of combustion of tantalum-carbon mixtures" Combust Explos Shock Waves 14 (4), pp. 455-460, 1978.
29.VA Knyazik, AS Shteinberg, High-temperature interaction in the Ta–C system under electrothermal explosion conditions, J. Mater. Synth. Process 1, pp. 85–91, 1993.
30.G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, "The Intrisic Thermal Conductivity of AlN," J. Phy. Chem. Solids, 48(7), 641, 1978.
31.T. J. Mroz, Jr., "Aluminum Nitride," Ceram. Bull., 71(5), 782, 1992.
32.A. W. Weimer, G. A. Cochran, G. A. Eisman, J. P. Henley, B. D. Hook, L. K. Mills, T. A. Guiton, A. K. Knudsen, N. R. Nicholas, J. E. Volmering, and W. G. Moore, "Rapid Process for Manufacturing Aluminum Nitride Powder," J. Am. Ceram. Soc., 77, [1] 3-18, 1994.
33.F. J.-M. Haussonne, "Review of Synthesis Method for AlN, "Mater. Manuf. Processes, 10(4), 717, 1995.
34.V. Rosenband, A. Gany "Activation of combustion synthesis of aluminum nitride powder "Journal of Materials Processing Technology 147 197–203, 2004.
35.R.-C. Juang, C.-J. Lee, C.-C. Chen "Combustion synthesis of hexagonal aluminum nitride powders under low nitrogen pressure" Materials Science and Engineering A 357 219 / 227, 2003.
36.M. Boćkowski, M. Wróblewski, B. Łucznik, I. Grzegory "Crystal growth of aluminum nitride under high pressure of nitrogen" Materials Science in Semiconductor Processing 4 543-548, 2001.
37.Steven M. Bradshaw and John L. Spicer,”Combustion Synthesis of Aluminum Nitride Particles and Whiskers”J. Am. Ceram. Soc., 82 [9] 2293–300, 1999.
38.Woo-Sik Jung, Hyeong Uk Joo, ”Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method”, Journal of Crystal Growth, 285 566–571, 2005.
39.Alexander Gromov, Vladimir Vereshchagin “Study of aluminum nitride formation by superfine aluminum powder combustion in air” Journal of the European Ceramic Society 24 2879-2884, 2004.
40.Marin-Ayral, R. M., Pascal, C., Martinez, F., and Tedenac, J. C., “Simultaneous Synthesis and Densification of Titanium Nitride by High Pressure Combustion Synthesis,” Journal of the European Ceramic Society, Vol. 20, pp. 2679-2684, 2000.
41.Shibuya, M., Despres, J. F., and Odawara, O., “Characteristic Sample Temperature and Pressure during Processing of Titanium Nitride Combustion Synthesis with Liquid Nitrogen,” Journal of Materials Science, Vol. 33, pp. 2573-2576, 1998.
42.A. Makino, Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis (SHS) process, Progress in Energy and Combustion Science, 27, pp. 1–74, 2001.
43.Zhang, S. and Munir, Z. A., “The Combustion Synthesis of Refractory Nitrides, Part II The Synthesis of Niobium Nitride,” J. Mater. Sci., 6, pp. 3380-3385, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 陳文典(1997a)。STS理念下之教學策略。物理教育,1(2),85-95。
2. 陳文典(1997b)。STS理念下教學策略。1997中華民國物理教育學術研討會論文集,20-30。
3. 高翠霞(1998)。主題式教學的理念-國小實施課程統整的可行策略。教育資料與研究,25,9-11。
4. 林顯輝(1991)。科學、技學和社會三者結合的科學教育新理念 。 國教天地 ,7,24-30。
5. 許榮富(1991)。從科學、技學與社會的整合談科學教育的未來發展。教師天地,52,24-31。
6. 張賴妙理(1998)。科學教師自我評鑑的概念與方法。科學教育月刊,213,2-13。
7. 吳武典(1971)。從心理動力學的觀點談影響學生學習的因素。教育文摘,16(5),5-11。
8. 王澄霞(1995b)。從「科學與社會互動之學習」探究數理教育問題。科學發展月刊,23,433-455。
9. 王澄霞(1995a)。STS活動中之「學」與「教」。科學教育學刊,3(1),115-137。
10. 陳文典(2000)。由國民中小學課程目標看--「自然與生活科技」學習領域之教學與教材。科學教育月刊,231,40-42。
11. 陳聖謨(2003)。主題式統整課程的設計與實施。教師之友,44(1),44-58。
12. 魏明通(1994)。各國STS課程教材評介-英國SATIS課程。科學教育,169,12-20。
13. 蘇宏仁(1996)。科教課程模式-科學、技學、社會(STS)之探討研究。科學教育月刊,190,2-12。
 
系統版面圖檔 系統版面圖檔