跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林逸汎
研究生(外文):Lin Yi Fan
論文名稱:電氧化法應用在工業用紙廠廢水之探討
論文名稱(外文):Study on Electro-Oxidation Treatment of Industrial Paper Mill Wastewater
指導教授:彭元興彭元興引用關係
指導教授(外文):Perng Yuan shing
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:電化學電氧化固定床電流密度COD導電度真色色度階層設計pH紙廠廢水
外文關鍵詞:electrochemistryelectrooxidationfixed-bedcurrent densityCODconductivitytrue colorpaper mill effluents
相關次數:
  • 被引用被引用:3
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要

國內大型工業用紙廠廢水經二級生物系統處理後水質指標已符合環保法規,但因電導度偏高( > 2,000 μs/cm)及水色呈微琥珀色,此將嚴重影響抄紙機濕端化學系統的穩定性及製程系統的潔淨度並且會有菌泥產生的問題,導致處理後的廢水必須放流;環保署擬2006年七月開始徵收水污及水權等費用,如此大量的放流水如法有效回收必定會造成營業成本上的增加。本研究係以設計一可應用於紙廠廢水;在低電壓下產生高電流,並利用電氧化的方式去除COD、導電度、色度等目標汙染物,以輔助現有廢水處理廠設備的不足並且降低廢水處理的成本。
第一階段反應器是結合電透析及電氧化的方向設計,但此種反應器的設計因電阻太大無法得到實驗所需的電流故需改造;第二階改造是以第一階段的反應器為主軸,分別在兩反應室內添加鐵珠以降低電阻,但在經幾分鐘反應後便又出現第一階段反應器的窘境故需再做改造;反應器的設計經過三個階段的改造最後以固定床的方式,並縮小體積及捨棄電透析來設計電化學反應器,藉此來探討該反應器設計應用在紙廠廢水的合適性及可行性。固定床式的電化學反應處理系統總容積400 ml,以不鏽鋼棒(304)為電極並以人造纖維網包覆,並以粒徑3 mm之鐵珠為填充材料,填充量占反應槽容積的80-95%;使用鐵珠前先以稀酸清洗,不鏽鋼棒則以砂紙處理;所處理的廢水是以生產工業用芯紙,產量在400噸紙/d,廢水的排放量為3,500-4,000 m3/d,經浮除系統處理之初級廢水為對象。
本研究係以23階層設計實驗,操作參數為電極間距5、15 mm,電流密度287、3454 A/m2,停留時間57、180 s。以半批次式循環進行實驗,總反應時間為2 hr,初級廢水pH 6.8,結果顯示180 s的停留時間對於各污染物的去除影響最大,去除效果也不都穩定;在階層設計方面經變異數分析,結果也顯示180 s對於各項污染物的去除皆有不良的影響。因此刪除180 s的停留時間並增加曝氣及過濾裝置,在此則改以22階層設計實驗;結果顯示,最佳操作條件為電極間距15 mm、電流密度3454 A/m2、停留時間57 s,對於各種污染物的去除率分別為COD=23%、導電度=18%、色度=27%,而整體的反應在5 min時幾乎已經達反應終點,且停留時間在180 s時並不利於各項污染物的去除。
此外,再對廢水的pH值做調整以pH 3及pH 9再進行試驗,結果顯示,在pH 9處理條件為電極間距15 mm、電流密度3454 A/m2、停留時間57 s時為最佳,各污染物的去除率分別為COD=28%、導電度=15%、色度=93%,整體反應在5 min時幾乎已經達反應終點。
本系統係以鑄鐵做為固定床的材料,在鹼性的條件下對於COD的去除比中性及酸性好,約28%;導電度方面在中性及鹼性條件下去除率比酸性好,但中性又較鹼性好,約18%;在鹼性的條件下真色色度去除有非常顯著的效果,可達90%以上。實驗結果顯示反應機制以電凝為主,電氧化則不明顯。
關鍵字:電化學、電氧化、固定床、電流密度、COD、導電度、
真色色度、階層設計、pH、紙廠廢水
ABSTRACT

Large domestic industrial paper mills generally already comply with the environmental regulations after secondary biological waste- water treatments. However, due to the high electrical conductivity (> 2000 μs/cm) and amber-colored appearance of the effluents, reusing of the water often impact seriously on the wet-end chemical stability and cleanliness of the production system, which also foster slime growth as well. Thus the post-treatment effluents must be discharged. Beginning in July 2006, the EPA intends to surcharge water pollution and right of usage taxes, therefore causing hefty increases to the operational costs of the major water users. In this study, we designed and built a laboratory electro-oxidation treatment unit capable of high currents under low voltages that can be used to treat paper mill effluents to remove target effluent pollutants such as COD, electrical conductivity and color in a bid to supplement existing mill wastewater treatment facilities and reduce overall treatment cost.
The phase I reactor was a designed to combine electro-dialysis and electro-oxidation. The reactor, however, encountered excessive electrical resistance that hinder the flow of necessary current. Thus, modification was necessary. In the phase II, we based design on the original reactor and filled the 2 cells with iron pellets to lower resistance. The same problem beset the phase I reactor recurred, however, after a few minutes of reaction time. A fixed-bed reactor design was then adopted for the phase III electrochemical unit, which had a reduced volume and forwent the dialysis membrane. We then tested paper mill effluents in the unit to examine the treatment suitability and feasibility. The reactor had a total volume of 400 mL, using 2 stainless steel (SS304) electrode rods which were wrapped with synthetic fiber mesh and the cell filled with 3 mm iron pellet to 80~95% of the reactor volume. The iron pellets were washed with dilute acid, and the electrodes sanded with emery paper before each treatment. The effluent treated in the study was from an industrial corrugating medium mill which produces 400 t/d of paper and discharges 3500~4000 m3/d of effluent. The post-DAF stage effluent was studied.
The study was based on a 23 factorial experimental design with operational variables of electrode spacing 5 and 15 mm; current density 287, 3454 A/m2; hydraulic retention time (HRT) 57 and 180 s. In the semibatch experiment, the total reaction time was 2 hr. The inflow effluent had pH of 6.8. The results indicate that the long HRT of 180 s had the greatest influences on pollutant removals, while the efficacy was unstable. With regard to the factorial design, the ANOVA also suggested that the 180 s HRT was detrimental to all effluent parameters. Hence, we deleted the condition and adding an aeration and filtration unit to the reactor, and changed the design to a 22 factorial. The results indicate that the optimal conditions entail an electrode spacing of 15 mm, current density of 3454 A/m2, and an HRT of 57 s. Removal efficiencies under this condition were 23% for COD, 18% for electrical conductivity, and 27% for color. The overall reaction seemed to have reached end-point within 5 min in a recirculation mode.
In addition, when we adjusted effluent pH using mineral acid or alkali to pH 3 and 9, respectively, before conducting the treatments, the results indicate that at pH 9, the above optimal conditions led to COD removal of 28%, conductivity of 15% and color of 93%.
Our reactor system used cast iron as material for the fixed-bed. Under an alkaline condition, COD removal (28%) was superior to the neutral and acidic conditions. Conductivity removal was better under neutral and alkaline conditions than the acidic condition. Neutral condition gave somewhat better result (18%) than the alkaline one. Alkaline condition was needed for true color removal and removal rate of 90% or better could be achieved. The overall results suggest that electrocoagulation was the main mechanism of pollutant removal, while electrooxidation played an insignificant role.
Key words: electrochemistry, electrooxidation, fixed-bed, current density, COD, conductivity, true color, paper mill effluents
目錄

封面內頁
簽名頁
授權書  iii
中文摘要 iv
目錄   v
圖目錄  x
表目錄  xii

第一章 前言  1
1.1 研究起源  1
1.2 研究動機  2
1.3 研究目的  4
第二章 研究內容及背景  5
2.1 造紙廠廢水水質特性  5
2.2 造紙廠之廢水處理單元流程  7
2.3 循環伏安法之原理  8
2.4 電化學方法及優點  10
2.4.1 電化學處理反應主要機制 11
2.4.1.1 陽極之氧化作用  11
2.4.1.2 陰極之還原作用 12
2.4.1.3 溶液中之凝聚作用  13
2.4.1.4 溶液中之水解作用  13
2.4.1.5 溶液中之氣浮作用  13
2.5 電化學處理技術  14
2.5.1 電解氧化法  14
2.5.2 電解浮除法  15
2.5.3 電解膠凝法  17
2.5.4 電解沉積法  19
第三章 文獻回顧  21
3.1 電氧化處理技術  21
3.2 填充床式電池  30
第四章 實驗設計及方法  35
4.1 實驗程序  35
4.1.1 操作參數及檢測項目  37
4.1.2 反應器說明及處理流程  37
4.2 實驗方法  40
4.2.1 23階層設  40
4.2.2 實驗流程及步驟  42
4.2.3 實驗設備  43
4.2.4 實驗材料  44
第五章 初步實驗結果與討論  45
5.1 電氧化反應器設計  45
5.2 廢水基本資料  51
5.2.1 原料及化學藥劑分析  51
5.2.2 廢水水質分析  52
5.3 變異數分析  53
5.4 pH 6.8  58
5.4.1 COD  58
5.4.2 導電度  60
5.4.3 色度  62
5.5 曝氣及過濾  64
5.5.1 變異數分析  65
5.5.2 COD  68
5.5.3 導電度  69
5.5.4 色度  70
5.6 pH 3  71
5.6.1 COD  72
5.6.2 導電度  73
5.6.3 色度  74
5.7 pH 9  77
5.7.1 COD  77
5.7.2 導電度  78
5.7.3 色度  79
5.8 綜合討論  80
5.8.1 COD  80
5.8.2 導電度  82
5.8.3 色度  83
5.9 反應機構  84
第六章 結論與建議  89
6.1 結論  89
6.2 建議  90
參考文獻  91
附錄 96
參考文獻

1.彭元興、王益真、余世宗、史濟元、林逸汎、陳威存(2005),電氧化法應用在工業用紙廠廢水之探討,第三十屆廢水技術研討會:136,中華民國環境工程學會,中壢。
2.Thompson G., Swain J., Kay M., Forster C.F.(2001),“The treatment of pulp and paper mill effluent : a review”, Bio. Tech. 77:275-286.
3.Pokhrel D., Viraraghavan T.(2004),“The treatment of pulp and paper mill wastewater : a review”, Sci. Total Environ. 333:37-58.
4.彭元興、王益真、史濟元、張安毅、林逸汎(2004),工業用紙廠廢水回收再利用探討-先驅廠級脈衝電集系統的應用,清潔生產暨永續發展研討會:,經濟部工業區,台北。
5.水污染防治法規(2003),行政院環保署環保護人員訓練所編印。
6.Chen G. (2004),“Electrochemical technologies in wastewater treatment”, Sep. Pur. Tech. 38:11-41.
7.Chiang L.C., Chang, J.E., Tseng, S.C. (1997),“Electrochemical oxidation pretreatment of refractroy organic pollutants”, Wat. Sci. Tech. 36(2-3):123-130.
8.詹士鴻(1998),製漿及造紙廢水再生利用技術之可行性研究,碩士論文,國立成功大學環境工程系。
9.何祖霆(1998),抄紙廢水再生利用技術研究,碩士論文,國立成功大學環境工程系。
10.翁崑沅(1992),電解浮除(電化膠凝)處理粗紙製漿黑液之可行性,碩士論文,國立成功大學環境工程系。
11.張安毅(2005),脈衝電集法在工業用紙廠廢水之應用,碩士論文,大葉大學環境工程系。
12.胡啟章(2002),電化學原理與方法,五南圖書出版股份有限公司。
13.Juttner K., Galla U., Schmieder H. (2000),“Electrochemical approaches to environmental problems in the process industry”, Elec. Acta 45:2575-2594.
14.黃順興(1999),電聚浮除法處理氯苯之探討,碩士論文,淡江大學水資源及環境工程系。
15.Chiang L.C., Chang J.E., Wen, T.C. (1995),“Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate”, Wat. Res. 29(2):671-678.
16.呂明和、張祖恩(1999),電解法處理含重金屬垃圾滲出水之可行性研究,第二十四屆廢水處理技術研究會:565-570,中華民國環境工程學會,中壢。
17.Abuzaid N.S., Alaadin A.B., Zakariya M.A.H.(2002),“Ground water coagulation using soluble stainless steel electrodes”, Adv. Env. Res. 6:325-333.
18.Xu X., Zhu X. (2004),“Treatment of refectory oily wastewater by electro-coagulation”, Chemosphere 56:889-894.
19.Hsieh S.Y., Cheng C.Y., Perng Y.S. (1983),“Electrolysis of sodium silicate solutions using cation-exchange membranes”, Sep. Sci. Tech. 18(9):821-829.

20.Elsheief A.E.(2003),“Removal of cadmium from simulated wastewater by electrodeposition on spiral wound steel electrode”, Elec. Acta 48:2667-2673.
21.Szpyrkowicz L., Grandi F. Z., Kaul S.N., Stern S.R. (1998),“Electrochemical treatment of copper cyanide wastewaters using stainless steel electrodes”, Wat. Sci. Tech.38(6):261-268.
22.Lin S.H., Shyu C.T., Sun M.C. (1998),“Saline wastewater treatment by electrochemical method”, Wat. Res.32(4):1059-1066.
23.Vlyssides A.G., Loizidou M., Karlis P.K., Zorpas A.A., Papaioannou D. (1999),“Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode”, J. Haz. Mat. B70:41-52.
24.Bejankiwar R.S.(2002),“Electrochemical treatment of cigarette industry wastewater:feasibility study”, Wat. Res 36:4386-4390.
25.Saracco G., Solarino L., Specchia V., Maja M.(2001),“Electrolytic abatement of biorefractory orangics by combining bulk and electrode oxidation process”,Chem. Eng. Sci. 56:1571-1578.
26.Rajkumar D., Palanivelu K. (2004),“Electrochemical treatment of industrial wastewater”, J. Haz. Mat. B113:123-129.
27.Hu K.H., Hu P.Y., Hu P.C. (2001),“Electrolytic Wastewater Treatment Method and Apparatus”, US Patent 6,274,028 B1.
28.Hu K.H., Hu P.Y., Hu P.C. (2003),“Electrolytic Wastewater Treatment Apparatus”,US Patent 6,554,977 B2.


29.Brillas E., Casado J.(2002),“Aniline degradation by Electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment”,Chemophere 47:241-248.
30.Feng C., Sugiura N., Shimada S., Maekawa T.(2003),“Development of a high performance electrochemical wastewater treatment system”, J. Haz. Mat. B103:65-78.
31.Kraft A., Stadelmann M., Blaschke M.(2003)“Anodic oxidation with doped diamond electrodes : a new advance oxidation process”, J. Haz. Mat. B7103:247-261.
32.陳鴻烈、鄭慧玲(1995),電解氧化法去除飲用水源中有機物影響因子之研究,農林學報,44(4):57-69。
33.謝長原(2002),電解催化氧化氯酚之研究,碩士論文,國立成功大學環境工程系
34.丁涴屏(2002),以電-芬頓程序處理含苯環類化合物廢水,碩士論文,私立嘉南藥理科技大學環境工程衛生系
35.Kusakabe K., Nishida H., Morooka S., Kato Y. (1986),“Simultaneous electrochemical removal of copper and chemical oxygen demand using a packing-bed electrode cell”, J. App. Elec. 16:121-126.
36.Simonsson D.(1984),“A flow-by packed-bed electrode for removal of metal ions form waste waters”, J. App. Elec. 14:595-604.
37.Fockedey E., Van Lierde A.(2002)“Coupling of anodic and cathodic reactions for phenol ekectro-oxidation using three-dimensional electrodes”, Wat Res 36:4169-4175.
38.Xiong Y., He C., Karlsson H.T., Zhu X.(2003)“Preformance of three-phase three-dimensional electrode reactor for thereduction of COD in Simulated wastewater-containing phenol”,Chemosphere 50:131-136.
39.李士安、王擁軍、王治國、張守健(2002),“鐵床在高色度有機廢水處理中的應用”,環境污染治理技術與設備,第3卷第8期:88-90。
40.賈保軍、張愛麗(2003),“有機廢水處理中復極固定床電解槽的研究發展”,環境污染治理技術與設備,第4卷第11期:21-25。
41.歐陽玉祝、傅偉昌(2003),“鐵屑微電解-共沉澱法處理屠宰場廢水的研究”,環境污染治理技術與設備,第4卷第8期:37-40。
42.趙春霞、邱熔處、趙旭濤、劉發強(2004),“鐵碳微電解法處理拉開粉廢水的研究”,環境污染治理技術與設備,第5卷第4期:73-75。
43.施英隆著(2000),“環境化學”,五南出圖書出版。
44.田中正三郎著,賴耿陽譯著(1923),“應用電化學”,復和
出版社。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top