跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林虹君
研究生(外文):Lin hung-chun
論文名稱:溶氧與氮源對生物復育能力與菌群結構之影響研究
論文名稱(外文):Effects of Dissolved Oxygen and Nitrogen Source on Bioremediation Capacity and Microbial Community Structure
指導教授:林啟文林啟文引用關係
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:160
中文關鍵詞:生物復育生物刺激生物強化甲基第三丁基醚回應曲面法單股DNA構形多型性聚合酶鏈鎖反應
外文關鍵詞:16S rDNABioremediationBioaugmentationBiostimulationMethyl tert-butyl etherMicrobial community structureMolecular profilingResponse surface analysi
相關次數:
  • 被引用被引用:2
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究之目的係針對受MTBE與BTEX污染之人工模擬實驗系統進行生物復育測試,評估進行生物刺激及生物強化後對基質之分解效率,並利用統計學之回應曲面法(RSM)建立各基質最佳去除效率之氮源與溶氧的操作條件,同時獲得回應曲面之模型。此外,並採用分子生物技術中之聚合酶鏈鎖反應(PCR)與單股DNA構形多型性(SSCP)分析技術,以鑑別混合菌群之生物相結構變化情形,並建立生物復育槽之去除效率與其菌群結構間之關係。
研究結果顯示:(1)生物復育槽處理MTBE與BTEX之能力依序為ethylbenzene >p-xylene >toluene >benzene >MTBE;(2)經生物刺激及生物強化後之微生物於去除MTBE與BTEX之能力上,可使效率增加10~30 %左右,顯示氮源與溶氧量之重要性及所加入之純菌株確實對生物分解有極大之助益;(3)利用回應曲面法所獲致之結果如下:在不同氮源與溶氧量對Benzene受「生物刺激」之去除效率中,若將氮源量與溶氧量分別控制在65 mg/L與15.6 mg/L時,可使Benzene之去除效率提高至63.8 %;在不同氮源與溶氧量對MTBE+BTEX受「生物刺激」之去除效率中,若將氮源量與溶氧量分別控制在61 mg/L與15 mg/L時,可使 MTBE與BTEX之去除效率提高至62 %;在不同氮源與溶氧量對MTBE受「生物刺激+生物強化」之平均去除效率中,若將氮源量與溶氧量分別控制在63 mg/L與14 mg/L時,可使MTBE之去除效率提高至46 %;在不同氮源量與溶氧量對MTBE+BTEX受「生物刺激+生物強化」之平均去除效率中,若將氮源量與溶氧量分別控制在60 mg/L與15 mg/L,可使MTBE+BTEX之去除效率提高至73.8 %;溶氧對各基質去除效率的影響較氮源的影響顯著,因此整體而言溶氧的變化將較直接影響各基質的去除效率;(4)於進行不同氮源與溶氧之試程中,隨著MTBE與BTEX去除效率增加率之高低,可將微生物之菌群分為不同之族群;(5)由SSCP指紋圖譜中所呈現之主要bands (6、11),應可代表生物復育槽內之主要去除MTBE及BTEX之優勢菌群。
The objectives of the research are to investigate the bioremediation capability in an MTBE- and BTEX-contaminated bioreactor, and to evaluate substrate removal efficiencies under biostimulation and bioaugmentation conditions. In addition, a relationship between removal efficiencies and concentrations of nitrogen source and oxygen will be determined by using response surface analysis. Exploring microbial community changes under various environmental conditions (concentrations of nitrogen source and oxygen) by using SSCP profiles of PCR-amplified 16S rDNA genes and linking the changes with simultaneously diminishing substrate concentration in the microcosms are the goals of this research.
Results of the research show that: (1) the removals for MTBE and BTEX decrease in the order of ethylbenzene, p-xylene, toluene, benzene, and MTBE; (2) additional 10–30 % removals for both MTBE and BTEX were observed via. biostimulation and bioaugmentation, thereby indicating the significant contributions of nitrogen source, oxygen and the substrates-degrading pure cultures; (3) the Benzene removal increased to 63.8 % via. biostimulation with the concentrations of nitrogen source and oxygen at 65 mg/L and 15.6 mg/L, respectively. The MTBE and BTEX removals increased to 62 % via. biostimulation with the concentrations of nitrogen source and oxygen at 61 mg/L and 15 mg/L, respectively. The MTBE removal increased to 46 % via. biostimulation and bioaugmentation with the concentrations of nitrogen source and oxygen at 63 mg/L and 14 mg/L, respectively. The MTBE and BTEX removals increased to 73.8 % via. biostimulation and bioaugmentation with the concentrations of nitrogen source and oxygen at 60 mg/L and 15 mg/L, respectively. Dissolved oxygen plays more significant role while compared to nitrogen source from the response surface analysis; (4) the microbial consortium were divided into different groups, by examining the increasing rates for MTBE and BTEX removal efficiencies; and (5) Bands-6 and -11 are the dominant species in degrading MTBE and BTEX, by comparing population profiles with SSCP pure culture patterns.
目錄

封面內頁
簽名頁
博碩士論文暨電子檔案上網授權書 iii
中文摘要 iv
英文摘要 vi
誌謝 viii
目錄 ix
圖目錄 xiii
表目錄 xvii
第一章 緒論 1
1.1前言 1
1.2研究目的 3
第二章 文獻回顧 5
2.1 MTBE與BTEX之簡介及其物化特性 5
2.2 生物刺激對生物整治之影響 10
2.2.1 溶氧 10
2.2.2 氮源 13
2.3生物強化對生物整治之影響 14
2.4地下水生物復育之相關研究 16
2.5 MTBE與BTEX之生物分解特性 18
2.6總生菌數與分子生物之關係 21
2.7 分子生物技術於環境微生物菌群結構分析之相關研究 25
2.7.1 分子生物在污染整治上之重要性與應用 25
2.7.2 聚合酶鏈鎖反應原理 26
2.7.3 單股DNA構型多行性分析 26
2.7.4 16S rRNA基因放大與定序 28
2.7.5 微生物種類辨識方法 29
2.7.6 分子生物技術於環境微生物之應用 31
2.8 回應曲面法之應用 39
2.8.1回應曲面法之原理 39
2.8.2中心混層設計 41
第三章 材料與方法 42
3.1研究材料與儀器設備 44
3.1.1菌種來源 44
3.1.2藥品種類 44
3.1.3分子生物之儀器設備 48
3.1.4其他相關使用材料 48
3.1.5儀器設備 48
3.2研究方法與步驟 51
3.2.1 MTBE與BTEX批次降解能力評估 51
3.2.2生物反應器之組裝 52
3.2.3生物復育槽之去除效率評估方法與步驟 54
3.2.3-1生物復育槽之去除效率評估 54
3.2.3-2生物復育槽之檢量線 55
3.2.3-3 菌量之分析方法 55
3.2.4生物復育槽中MTBE與BTEX之分解實驗 56
3.3分子生物技術建立 63
3.3.1微生物之總體DNA萃取方法 64
3.3.2聚合酶連鎖反應 64
3.3.3單股DNA構形多型性分析步驟 66
3.3.4 微生物種類辨識 68
3.3.5菌群相似度與群叢分析 69
第四章 結果與討論 70
4.1 批次實驗 70
4.1.1不同氮源量之批次實驗結果 70
4.1.2不同溶氧量之批次實驗結果 72
4.1.3比較氮源與溶氧對MTBE與BTEX降解之影響 74
4.2生物刺激與生物強化之分解效率提升成效 76
4.2.1回應曲面模型之分析 82
4.2.2 MTBE與BTEX受生物刺激(無生物強化)之回應曲面分析 84
4.2.3 MTBE與BTEX受生物刺激(有生物強化)之回應曲面分析 95
4.2.4 MTBE與BTEX受生物刺激與生物刺激(有生物強化)之回應曲面分析 107
4.3氮源與溶氧對生物復育槽內菌群結構之變化影響 117
4.3.1 生物刺激之影響 117
4.3.2 生物強化之影響 118
4.4菌種定序比對分析 124
第五章 結論與建議 131
5.1結論 131
5.2建議 132
參考文獻 134
附錄A 生物復育槽之基質濃度檢量線 154
附錄B 菌量檢量線 158

圖目錄

圖2.8-1中心混層設計之星點及中心點補充實驗圖 41
圖3-1 整體研究架構流程圖 43
圖3.2-1模擬現地地下水環境之生物反應系統 53
圖3.2-2 生物復育槽之氧氣進流濃度監測曲線 58
圖3.2-3中心混層設計圖 61
圖3.3-1分子生物技術分析流程圖 63
圖3.3-2 SSCP流程圖 67
圖4.1-1 不同氮源濃度下MTBE與BTEX之降解效率圖 71
圖4.1-2 不同溶氧濃度下MTBE與BTEX之降解效率圖 73
圖4.1-3不同溶氧與氮源濃度下混合菌對MTBE與BTEX之去除效率關係 75
圖4.2-1(a)~(c)為不同溶氧與氮源量試程下之去除效率圖 78
圖4.2-2 不同氮源與溶氧之試程對生物刺激、生物強化與空白實驗組之比較圖 81
圖4.2-3不同溶氧與氮源試程下之總生菌數長條圖 82
圖4.2-4 不同氮源與溶氧量對Benzene受生物刺激(無生物強化)去除效率之回應曲面圖 90
圖4.2-5不同氮源與溶氧量對Benzene受生物刺激(無生物強化)去除效率之等去除效率線圖 90
圖4.2-6不同氮源與溶氧量對Toluene受生物刺激(無生物強化)去除效率之回應曲面圖 91
圖4.2-7 不同氮源與溶氧量對Toluene受生物刺激(無生物強化)去除效率之等去除效率線圖 91
圖4.2-8 不同氮源與溶氧量對Ethylbenzene受生物刺激(無生物強化) 去除效率之回應曲面圖 92
圖4.2-9不同氮源與溶氧量對Ethylbenzene受生物刺激(無生物強化)去除效率之等去除效率線圖 92
圖4.2-10不同氮源與溶氧量對p-xylene受生物刺激(無生物強化)去除效率之回應曲面圖 93
圖4.2-11不同氮源與溶氧量對p-xylene受生物刺激(無生物強化)去除效率之等去除效率線圖 93
圖4.2-12不同氮源與溶氧量對MTBE+BTEX受生物刺激(無生物強化)去除效率之回應曲面圖 94
圖4.2-13不同氮源與溶氧量對MTBE+BTEX受生物刺激(無生物強化)去除效率之等去除效率線圖 94
圖4.2-14不同氮源與溶氧量對MTBE受生物刺激(有生物強化)去除效率之回應曲面圖 101
圖4.2-15不同氮源與溶氧量對MTBE受生物刺激(有生物強化)去除效率之等去除效率線圖 101
圖4.2-16不同氮源與溶氧量對Benzene受生物刺激(有生物強化)去除效率之回應曲面圖 102
圖4.2-17 不同氮源與溶氧量對Benzene受生物刺激(有生物強化)去除效率之等去除效率線圖 102
圖4.2-18 不同氮源與溶氧量對Toluene受生物刺激(有生物強化)去除效率之回應曲面圖 103
圖4.2-19 不同氮源與溶氧量對Toluene受生物刺激(有生物強化)去除效率之等去除效率線圖 103
圖4.2-20 不同氮源與溶氧量對Ethylbenzene受生物刺激(有生物強 化)去除效率之回應曲面圖 104
圖4.2-21不同氮源與溶氧量對Ethylbenzene受生物刺激(有生物強化)去除效率之等去除效率線圖 104
圖4.2-22 不同氮源與溶氧量對p-xylene受生物刺激(有生物強化)去除效率之回應曲面圖 105
圖4.2-23 不同氮源與溶氧量對p-xylene受生物刺激(有生物強化)去除效率之等去除效率線圖 105
圖4.2-24 不同氮源與溶氧量對MTBE+BTEX受生物刺激(有生物強化)去除效率之回應曲面圖 106
圖4.2-25 不同氮源與溶氧量對MTBE+BTEX受生物刺激(有生物強化)去除效率之等去除效率線圖 106
圖4.2-26 不同氮源與溶氧量對MTBE受生物刺激與生物強化下去除效率之回應曲面圖 113
圖4.2-27 不同氮源與溶氧量對MTBE受生物刺激與生物強化下去除效率之等去除效率線圖 113
圖4.2-28 不同氮源與溶氧量對Benzene受生物刺激與生物強化下去除效率之回應曲面圖 114
圖4.2-29 不同氮源與溶氧量對Benzene受生物刺激與生物強化下去除效率之等去除效率線圖 114
圖4.2-30 不同氮源與溶氧量對Toluene受生物刺激與生物強化下去除效率之回應曲面圖 115
圖4.2-31 不同氮源與溶氧量對Toluene受生物刺激與生物強化下去除效率之等去除效率線圖 115
圖4.2-32 不同氮源與溶氧量對MTBE+BTEX受生物刺激與生物強 化下去除效率之回應曲面圖 116
圖4.2-33 不同氮源與溶氧量對MTBE+BTEX受生物刺激與生物強化下去除效率之等去除效率線圖 116
圖4.3-1 不同氮源與溶氧試程下經生物刺激後菌群結構之相對相似度與群叢關係及SSCP指紋圖譜。(a)以PCR-SSCP分佈之指紋圖譜;(b)菌群間相對相似度及群叢關係圖 121
圖4.3-2 不同氮源與溶氧試程下經生物刺激與生物強化後菌群結構之相對相似度及群叢關係與SSCP指紋圖譜。(a)以PCR-SSCP分佈之指紋圖譜;(b)菌群間相對相似度及群叢關係圖 122



表目錄

表2.1-1目前公告之地下水污染管制標準 8
表2.1-2 MTBE與BTEX之物化特性 9
表2.5-1 MTBE與BTEX生物分解之可行性相關研究 22
表2.7-1傳統方法對環境中微生物之培養可能率 30
表2.7-2分子生物應用技術之相關文獻 33
表3.1-1碳源藥品清單 45
表3.1-2模擬地下水之營養鹽配比 45
表3.1-3寡核苷酸引子種類 46
表3.1-4 PCR與SSCP相關藥品清單 46
表3.1-5分子生物技術之相關藥品種類 47
表3.1-6分子生物技術之儀器設備清單 49
表3.1-7本研究分子生物技術其它使用相關材料清單 50
表3.2-1實驗設計組數表 60
表3.2-2三階層二變數中心混層實驗設計反應參數實驗值範圍 61
表3.3-1 PCR升溫程式 65
表3.3-2 PCR藥品與比例 65
表3.3-3 SSCP膠片配比 67
表3.3-4 SSCP變性劑(Loading dye)成分與配比 68
表4.2-1為各試程中進行生物刺激及生物刺激與生物強化後效率增加率 81
表4.2-2各基質(MTBE與BTEX)受「生物刺激(無生物強化)」之去除效率 87
表4.2-3各基質回應曲面之變異分析表:生物刺激(無生物強化)(1/2) 87
表4.2-3各基質回應曲面之變異分析表:生物刺激(無生物強化)(2/2) 88
表4.2-4各基質最佳回應曲面模型之迴歸分析表:生物刺激(無生物強化) 89
表4.2-5各基質(MTBE與BTEX)受「生物刺激(有生物強化)」之去除效率 98
表 4.2-6 各基質回應曲面之變異分析表:生物刺激(受生物強化) 99
表4.2-7各基質最佳回應曲面模型之迴歸分析表:生物刺激(受生物強化) 100
表4-2-8 各基質(MTBE與BTEX)受「生物刺激+生物刺激(有生物強化)」之去除效率 109
表4.2-9 各基質回應曲面之變異分析表:「生物刺激+生物刺激(有生物強化)」之平均(1/2) 110
表4.2-9 各基質回應曲面之變異分析表:「生物刺激+生物刺激(有生物強化)」之平均(2/2) 111
表4.2-10 各基質最佳回應曲面模型之迴歸分析表:「生物刺激+生物刺激(受生物強化)」平均 112
表4.3-1 生物刺激之指紋圖譜條件對照表 121
表4.3-2 生物強化之指紋圖譜條件對照表 123
表4.4-1 MTBE菌(Pseudomonas aeruginosa YAMT521)與Pseudomonas aeruginosa ATCC 27853序列比對結果 126
表4.4-2 Benzene菌(Ralstonia sp. YABE411)與Ralstonia sp. P-10序列比對結果 127
表4.4-3 Toluene菌(Pseudomonas sp. YATO411)與Pseudomonas sp. PH1序列比對結果 128
表4.4-4 Ethylbenzen菌(Pseudomonas putida YABE411)與Pseudomonas putida序列比對結果(1/2) 129
表4.4-4 Ethylbenzene菌(Pseudomonas putida YABE411)與Pseudomonas putida序列比對結果(2/2) 130
參考文獻
中華民國環保署網站www.epa.gov.tw。
中國石油公司,(2004),95無鉛汽油物質安全資料表。
王永福、鄭幸雄、曾怡禎,(2002),應用分子生物學方法研究分析複合基質中之中溫產氫菌群族,第27屆廢水處理技術研討會。
王俊淇,(2004),間-甲酚降解菌之好氧性生物降解及其土壤生物復育上之應用,碩士論文,嘉南藥理科技大學環境工程與科學系。
方瑋寧、高志明,(2002),MTBE好氧分解之可行性研究,碩士論文,國立中山大學環境工程研究所。
台中縣環境保護局,(2004),台中縣烏日鄉五光路地下水總酚污染控制場址改善計畫,期末報告。
史盟秀,(2001),BTEX在幾種台灣主要土壤中之吸附與降解,碩士論文,國立屏東科技大學環境工程與科學系。
李晉嘉,(2003),以反應曲面法研究生化柴油之最優化酵素合成,碩士論文,大葉大學食品工程系。
朱文昌、盧重興、林明瑞 (1996),生物濾床法處理含BTEX廢氣之研究,碩士論文,國立中興大學環境工程研究所。
李家偉,(1999),汽油添加劑MTBE(甲基第三丁基醚)之環境污染特性,環保訓練園地,第49期,1-2。
林哲昌、林淑滿,(2003),以薄膜程序處理受MTBE污染之地下水的應用向探討,第1屆土壤及地下水處理技術研討會。
林彥穎、劉文佐,(2001),以葡萄糖為基質的生物除磷系統體積負荷與磷負荷對代謝行為與菌相影響之研究,碩士論文,國立中央大學環境工程研究所碩士班。
林依蓉、劉文佐,(2001),多氯聯苯厭氧馴養降解菌群微生物多樣性解析,碩士論文,國立中央大學生命科學研究所碩士論文。
林啟文、吳志鴻 、陳立軒、林虹君,(2003),ETBE、MTBE及TAME之生物降解中間產物探討,第28屆廢水處理技術研討會。
林啟文、吳志鴻、陳政遠、鄭雅文、林虹君、陳立軒,(2003),本土MTBE分解菌對甲基第三丁基醚之動力模式探討,第八屆生化工程研討會論文集。
林啟文、鄭雅文、陳信源、洪照先、羅伊翔,(2003),MTBE分解菌之外加碳源及最適量化研究,第一屆土壤與地下水研討會。
林南成,(2005),以生物滴濾塔處理含MTBE與BTEX廢氣之生物分解能力與生物相研究,碩士論文,大葉大學環境工程研究所碩士論文。
吳志鴻,(2004),MTBE污染地下水之生物復育影響因子及其生物相研究,碩士論文,大葉大學環境工程研究所碩士論文。
吳春生,(2002),以生物曝氣法整治受地下儲槽洩漏之石化系有機污染物模場研究,碩士論文,國立中山大學環境工程研究所。
邱憲明,(2004),利用傳統培養方法和分子生物方法探討油污染土壤的微生物社會結構,碩士論文,國立成功大學生物學研究所。
美國環保署網站(USEPA) www.epa.gov。
侯松男、林啟文,(2002),含氧汽油添加劑分解菌之馴化、篩選及生長條件研究,碩士論文,大葉大學環境工程研究所。
施雅馨、賴吉永,(2003),台灣黑翅土白蟻(Odontotermes formosanus)腸道共生菌功能群之研究,碩士論文,國立彰化師範大學生物學系碩士班。
姜法清、李季眉,(1996),生物濾床法處理VOCs廢氣之生物相與動力研究,碩士論文,國立中興大學環境工程研究所。
胡苔莉、蔡蘊華,(2002),以原位雜交技術探討配水系統中之生物膜,第27屆廢水處理技術研討會。
梁志銘、洪俊雄、葉穎緻、許淑娟,(2002),以PCR-DGGE方法分析比較活性污泥除磷系統與非除磷系統中之紫色不含硫光合作用細菌,行政院國科會研究計畫。
莊順,(1996),受油污染之地下水現地生物復育技術研究,碩士論文,國立屏東科技大學環境工程技術研究所。
莊慶芳、邱明良、李孟哲、盧至人、楊秋忠,(2001),多環芳香族化合物(PAHs)污染場址中各馴化菌株復育能力與氧氣需求之探討,第十六屆廢棄物處理技術研討會論文全集光碟No. 6~21,斗六。
高志明、陳谷汎、方瑋寧、陳廷育,(2002),以好氧生物復育法整治受甲基第三丁基醚 (MTBE)污染場址之評估,第一屆海峽兩岸土壤及地下水污染整治研討會。
郭加恩,(2002),多氯聯苯於厭氧河口底泥中之還原去氯作用及其被分解過程中之菌群分析,博士論文,國立台灣海洋大學海洋生物研究所。
郭俊瑋,(2003),應用生物氣提法處理土壤有機污染物之研究,碩士論文,國立台灣大學環境工程學研究所。
陳信源、林啟文,(2003),甲基第三丁基醚分解菌之分解能力與重金屬抑制效應研究,碩士論文,大葉大學環境工程研究所。
陳鴻易,(2003),以16S rDNA分析方法監測石油污染土壤中微生物相之變化,碩士論文,國立中山大學生物科學研究所。
陳谷汎,(2001),以生物復育法整治2,4-二氯酚污染之地下水,碩士論文,國立中山大學環境工程研究所。
陳俊源,(2004),砂管柱流甲苯共代謝三氯乙烯之研究,碩士論文,國立成功大學環境工程系。
張淑微,(2002),以反應曲面法研究酵素合成己醇酯類之最優化,碩士論文,大葉大學食品工程系。
張怡塘、李俊福、洪俊雄、李佳熹、張綺砡、楊子君、周希瓴、王灝頤、詹惠萍、葉榮美,(2003),應用螢光原位雜交技術(FISH)偵測土壤與地下水中微生物族群結構,第一屆土壤與地下水研討會。
翁明章、戴良恭、林裕峰,(1994),甲苯暴露造成之職業傷害,中華職業醫學雜誌,第1卷,第3期,119-123。
曾元玨,(2005),汽油中甲基第三丁基醚及芳香族化合物於有機相/水相分佈行為研究,碩士論文,國立高雄師範大學生物科學研究所。
曾怡禎、張權英,(2001),利用分子生物方法分析微生物社會的結構,環境保護分子生物科技策略論壇會議資料集(III)。
鄭雅文,(2005),MTBE與BTEX分解菌之篩選及生物分解之動力學研究,碩士論文,大葉大學環境工程研究所。
黃志謙、賴吉永,(2003),新的電泳技術-改良式DNA單股構型多形及部分雜交方法分析白蟻腸道的細菌,碩士論文,國立彰化師範大學生物學系。
黃俊霖、劉文佐,(2001),以分子生物技術探討厭氧生物產氫程序之菌群結構,碩士論文,國立中央大學環境工程研究所
黃馪珽、廖述良、劉文佐,(2001),單槽連續進流回分式活性污泥系統微生物菌相變化之研究,碩士論文,國立中央大學環境工程研究所。
楊如玉,(2005),以變性梯度膠體電泳法分析土壤中酚降解菌之變化,碩士論文,嘉南藥理科技大學環境工程與科學系。
廖世媚、楊秋和,(1997),利用PCR-SSCP技術分析Rh基因型,碩士論文,國立中央警察大學警政研究所。
廖俊博、曾怡禎,(2002),南仁山古湖底泥甲烷氧化菌社會結構之研究,碩士論文,國立成功大學生物學系。
蔡佳汝,( 2005),以固定化菌體顆粒進行甲苯與乙酸乙酯分解及基質抑制效應之研究,碩士論文,中華大學土木工程學系
鄭幸雄、陳乃慈、簡杏純、邱瓊芳、吳坤龍,(2003),污染場址馴化之微生物對柴油降解性之研究,第一屆土壤與地下水研討會。
鄭幸雄、吳坤龍、曾怡禎、莊蕙萍,(2003),高溫厭氧流體化床處理PAN人造纖維廢水之微生物族群動態研究,第28屆廢水處理技術研討會。
鄭幸雄、白明德、趙禹杰,(2003b),厭氧產氫菌分解高分子化合物及petone之產氫機制,第28屆廢水研討會論文集。
鄭幸雄、林秋裕、曾怡禎、李季眉、林信一、陳幸德,(2003c),複合基質生物產氫機制及程序之應用整合研究-2002年,第28屆廢水研討會論文集。
簡青紅、曾怡禎、張權英、劉憶芬,(2003),厭氧生物產氫反應槽的微生物社會結構,第28屆廢水處理技術研討會。
簡青紅,(2003),利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構,碩士論文,國立成功大學生物學系。
謝昶毅,(2003),以PCR-DGGE技術分析石油碳氫化合物污染地下水之微生物相,碩士論文,國立中山大學生物科學研究所。
潘結昌,(2000),利用反應曲面法尋求以Aspergillus terreus生產lovastatin之培養基最適化研究,碩士論文,朝陽大學應用化學系。
蘇立群,(2005),受無鉛汽油添加劑甲基第三丁基醚污染場址整治排氣及受污水之處理:活性污泥曝氣池法及生物滴濾塔法,碩士論文,國立中山大學環境工程研究所
蕭嘉瑢,(2004),複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態之研究,碩士論文,國立成功大學環境工程學系。
環保署公告毒性化學物質物質安全資料表(MSDS) http://www.epa.gov.tw/J/toxic/資料查詢/160-01.doc。
Amann, R. I., W. Ludwig, and K. H. Schliefer, (1995) “Phylogenetic identification and in situ dectection of individual microbial cells without cultivation,” Microbiological Reviews, 59: 143-169.
Bano, N., and J. T. Hollibaugh, (2000) “Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the β subdivion of the class Proteobacteria in the arctic ocean,” Applied and Environmental Microbiology, 66: 1960-1969.
Bassam, B. J., G. Caetano-Anolles, and P. M. Gresshoff, (1991) “Fast and sensitive silver staining of DNA in polyacrylamide gels,” Anal Biochem, 196: 80-83.
Balcke, G. U., L. P. Turunen, R. Geyer, and D. F. Wenderoth, (2004) “Chlorobenzene biodegradation under consecutive aerobic- anaerobic conditions,” FEMS Microbiology Ecology, 49: 109-120.
Backman, J. S. K., H. Anna, C. T. Christoph, and L. Per-Eric, (2003) “Liming induces growth of a diveres flora of ammonia-oxidising bacteria in acid spruce forest soil as determined by SSCP and DGGE,” Soil Biology&Biochemistry, 35: 1337-1347.
Bedient, P. B., H. S. Rifai, and C. J. Newell, (1999) “Ground Water Contamination – Transport and Remediation. PTR Prentice-Hall,” Inc., New Jersey, 604.
Bielefeldt, A. R., and H. D. Stensel, (1999) “Modeling competitive inhibition effects during biodegradeation of BTEX mixtures,” Water Research, 33: 707-714.
Bowman, L., and E. Geiger, (1984) “Optimization of fermentation conditions of alcohol production,” Biotechnol Bioeng, 26: 1492-1497.
Briglia, M., R. I. L. Eggen, de. Vos, W. M. Van, and J. D. Elsas, (1996) “Rapid and sensitive method for the detection of Mycrobacterium chlorophenolicum PCP-1 in soil based on 16S rRNA gene targeted PCR,” Applied and Environmental Microbiology, 62: 1478-1480.
Bürgmann, H., M.Pesaro, F. Widmer, and J. Zeyer, (2001) “A strategy for optimizing quality and quantity of DNA extracted from soil,” J. Microbiol Methods, 45: 7-20.
Chen, S. L., (1981) “Optimization of batch alcoholic fermentation of glucose syrup substrate,” Biotechnol Bioeng, 23: 1827-1836.
Cheynier, V., M. Feinberg, C. Chararas, and C. Ducauze, (1983) “Application of response surface methodology to evaluation of bioconversion experimental conditions,” Applied and Environmental Microbiology, 45: 634-639.
Cha, G. C., and N. Tatsuya, (1997) “Effect of rapid temperature change and HRT on anaerobic acidogenesis,” Water Science and Technology, 36: 247-253.
Chapman, D. W., B. T. Byerley, D. J. Symth, R. D. Wilson, and D. M Mackay, (1997) “Semi-passive oxygen release barrier for enhancement ofintrinsic bioremediation,” In Situ and On-Site bioremediation, Battelle Press, Columbus Ohio, 4: 209-214.
Duarte, G. F., A. S Rosado, L. Seldin, A. de, and J. D. van Elsas, (2001) “Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization(dsz) gene,” Applied and Environmental Microbiology, 67: 1052-1062.
Eweis J., E. D. Schroeder, K. S. Chang, R. Morton, and R. Caballerp, (1998) “Meeting the challenge of MTBE biodegradation,” Presented of the 90th annual meeting and exhibition, Air and Waste Management Association, Toronto, Ontario, Canada, June 8-13.
Ferguson, R. L., E. N. Buckley, and A. V. Palumbo, (1984) “Response of marine bacterioplankton to differential filtration and confinement,” Applied and Environmental Microbiology, 47: 49-55.
Fujiwara Y., T. Kinoshita, H. Stao, and I. Kojima, (1984) “Biodegradation and bioconcentration of alkylethers,” Yukagaku Japan oil chemists' society, 33: 111-115.
Futamata, H., S. Harayama, and K. Watanabe, (2001) “Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria,” Applied and Environmental Microbiology, 55: 248-253.
Francois, A., H. Mathis, D. Godefroy, P. Piveteau, F. Fayolle, and F. Monot, (2002) “Biodegradation of Methy tert-Butyl Ether and Other Fuel Oxygenates by a New Strain, Mycobacterium austroafricanum IFP 2010,” Applied and Environmental Microbiology, 68: 2754-2762.
Foucher, S., B. F. Brunet, P. d'Hugues, M. Clarens, J. J. Godon, and D. Morin, (2003) “Evolution of the bacterial population the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column and comparison with a mechanically agitated reactor,” Hydrometallurgy, 71: 5-12.
Gandhi, S., B-T. Oh, J. L. Schnoor, and P. J. J. Alvarez, (2002) “Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions,” Water Research, 36: 1973-1982.
Gich, F., G. J. Garcia, and J. Overmann, (2001) “Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes,” Arch Microbiol, 177: 1-10.
Greenberg, M. M., (1997) “The central nervous system and exposure to toluene: A risk characterization,” Environmental Research, 72: 1-7.
Griffiths, B. S., K. Ritz, N. Ebblewhite, and G. Dobson, (1999) “Soil microbial community structure: Effects of substrate loading rates,” Soil Biology and Biochemistry, 31: 145-153.
Hamed, T. A., E. Bayraktar, T. Mehmetoglu, and U. Mehmetoglu, (2003) “Substrate interactions during the biodegradation of benzene, toluene and phenol mixtures,” Process Biochemistry, 39: 27-35.
Hardison, L. K., S. S. Curry, L. M. Ciuffetti, and M. R. Hyman, (1997) “Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp,” Applied and Environmental Microbiology, 63: 3059-3067.
Head, I. M., J. R. Saunders, and R. W. Pickup, (1998) “Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultured microorganisms,” Microbial Ecology, 35: 1-21.
Hristova, K. R., C. M. Lutenegger, and K. M. Scow, (2001) “Detection and Quantification of Methy tert-Butyl Ether-Degrading Strain PM1 by Real-Time TaqMan PCR,” Applied and Environmental Microbiology, 67: 5154-5160.
Hollibaugh, J. T., N. Bano, and H. W. Ducklow, (2002) “Widespread distribution in Polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria,” Applied and Environmental Microbiology, 68: 1478-1484.
Himmelblau, D. M., (1970) “Process analysis by statistical methods,” John Wiley and Sons, New York, 230-292.
Humphries, S. E., V. Gudnason, R. Whittall, and N. M. Ian, (1997) “Single-strand conformation polymorphism analysis with high throughput modifications, and its use in mutation detection in familial hypercholesterolemia,” Clinical Chemistry, 43: 427-435.
Kataoka, N., A. Miya, and K. Kiriyama, (1997) “Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria,” Proc. of the 8th International Conference on anaerobic digestion, 2: 283-390.
Kao, C. M., S. C. Chen., J. Y. Wang, Y. L. Chen, and S. Z. Lee, (2003) “Remediation of PCE-contaminated aquifer by an in suit two-layer biobarrier: laboratory batch and column studies,” Water Research, 37: 27-38.
Kelly, D., and R. Hendreson, (1999) “Fate and Transport of Oxygen From Oxygen Release Compound,” In Situ Bioremediation of Petroleum Hydrocarbon and Other Orgnic Compound, Battelle Press, Columbus, Ohio, 301-306.
Kutty, R., H. J. Purohit, and P. Khanna, (2000) “Isolation and characterization of a Pseudomonas sp. strain PH1 utilizing meta- aminophenol,” Canadian Journal of Microbiology, 46: 211-217.
Kozdroj, J., and J. D. V. Elsas, (2000) “Respone of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches,” Soil Biology and Biochemistry, 32: 1405-1417.
Kozdroj, J., and J. D. V. Elsas, (2001) “Structure diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE fingerprinting and FAME profiling,”Applied Soil Ecology, 17: 31-42.
Kharoune, M., A. Pauss, and J. M. Lebeault, (2001) “Aerobic biodegradation of an oxygenates mixture: ETBE, MTBE and TAME in an upflow fixed-bed reactor,” Water Research, 35: 1665-1674.
LaPara, T. M., C. H. Nakatsu, L. M. Pantea, and J. E. Alleman, (2002) “Stability of the bacterial communities supported by a seven-stage biological processs treating pharmaceutical wastewater as revealed by PCR-DGGE,” Water Research, 36: 638-646.
Lee, D. H., Y. G. Zo, and S. J. Kim, (1996) “ Nonradioactive method to study genetic profiles of natural bacterial communities by PCR single-strand-conformation polymorphism,” A Applied and Environmental Microbiology, 62: 3112-3120.
Lin, C. Y., and C. H. Lay, (2004) “Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora,” International Journal of Hydrogen Energy, 29: 41-45.
Maidak, B. L., N. Larsen, M. J. McCaughey, R. Overbeek, G. J. Olsen, K. Fogel, J. Blandy, and C. R. Woese, (1994) “The ribosomal database project,” Nucleic Acids Research, 22: 3485-3487.
Mackay, D. M., R. D. Wilson, K. M. Scow, M. D. Einarson, B. Fowler, and I. A. Wood, (2001) “In situ remediation of MTBE at Vandenberg Air Force Base, California,” Contam. Soil Sediment Water Spring special issue, 43-46.
Mesarcha, M. B., C. H. Nakatsub, and L. Niesa, (2004) “Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation,” Water Research, 38: 1281-1288.
Mo, K., C. O. Lora, A. E. Wanken, M. Javanmardian, N. Yang, and C. F. Kulpa, (1999) “Biodegradation of ethyl tert-Butyl Ether by pure bacterial cultures,” Applied and Environmental Microbiology, 47: 69-72.
Morgenroth. E., E. D. Schroeder., D. P. Y. Chang, and K. M. Scow, (1996) “Nutrient limitation in a compost biofilter degrading,” J Air Waste Manage Assoc, 46: 300-8.
Mohan, S. V., N. C. Rao, K. K. Prasad, and P. N. Sarma, (2005) “Bioaugmentation of an anaerobic sequencing batch biofilm reactor(AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater,” Process Biochemistry, 40: 2849-2857.
Muehlberger, E., W. Harris, and P. Hicks, (1997)“In Situ Biosparging of aLarge Scale Dissolved Petroleum Hydrocarbon Plume at a Southwest Lumber Mill,” Technical Association for the Worldwide Pulp, Paper, and Converting Industry, (TAPPI), 1: 95~101.
Moresi, M., A. Colicchio, and F Sansovini,. (1980) “Optimization of whey fermentation in a jar fermenter,” Eur. J. Applied and Environmental Microbiology, 9: 173-183.
Nakamura, D. N., (1994) “MTBE, still the best choice,” Hydrocarbon Processing, 73: 17.
Neefs, J. M., Y. V. Peer, P. Rijk, S. Chapelle, and R. Wachter, (1993) “Compilation of small ribosomal subunit RNA structures,” Nucleic Acids Research, 21: 3025-3049.
Orita, M., H. H. Iwahana, K. H. Kanazawa, and T. Sekiya, (1989) “Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms,” Proceedings of the National Academy of Sciences, 86: 2766-2770.
Oh, J-I., S-H. Lee, and K. Yamamoto, (2004) “Relationship between molar volume and rejection of arsenic species in groundwater by low-pressure nanofiltration process,” Journal of Membrane Science, 234: 167-175.
Park, K., (1999) “Biodegradation of the fuel oxygenate, methyl tert-butyl ether(MTBE), and treatment of MTBE contaminated ground water in laboratory scale reactors”.
Quana, X., H. Shi, H. Liu, P. Lv, and Y. Qian, (2004) “Enhancement of 2,4-dichlorophenol degradation in conventional activated sludge systems bioaugmented with mixed special culture,” Water Research, 38: 245-253.
Qu, Y., J. Zhou, J. Wang, X. Fu, and L. Xing, (2005) “Microbial community dynamics in bioaugmented sequencing batch reactors for bromoamine acid remova,” FEMS Microbiology Letters, 246: 143-149.
Ritz, K., and B. S. Griffiths, (1994) “Potential application of a community hybridization technique for assessing change in the population structure of soil microbial communities,” Soil Biology and Biochemistry, 26: 963-971.
Renellaa, G., M. Mench, A. Gelsomino, L. Landi, and P. Nannipieri, (2005) “Functional activity and microbial community structure in soils amended with bimetallic sludges,” Soil Biology & Biochemistry, 37: 1498-1506.
Rosado, A. S., L. Seldin, A. C. Wolters, E. van, D. J., (1996) “Quantitative 16S rDNA-targeted polymerase chain reaction and oligonucleotide hybridization for the detection of Paenibacillus azotofixans in soil and the wheat rhizosphere,” FEMS Microbiol Ecol, 19: 153-164.
Ruberto, L., S. C. Vazquez, and W. P. M. Cormack, (2003) “Effectiveness of the natural bacterial fora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil,” International Biodeterioration & Biodegradation, 52: 115-125.
Salanitro, J. P., L. A. Diaz, M. P. Williams, and H. L. Wisniewski, (1994) “Isolation of a bacterial culture that degrades methyl t-butyl ether,” Applied and Environmental Microbiology, 60: 2593-2596.
Sambrook, J., D. W. Russell, and J. Sambrook, (2001) “Molecular cloning: a laboratory manual,” 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor.
Saarijärvi, K., P. Virkajärvi , H. Heinonen-Tanski, and I. Taipalinen (2004) “N and P leaching and microbial contamination from intensively managed pasture and cut sward on sandy soil in Finland,” Agriculture, Ecosystems and Environment, 104: 621-630.
Schirmer, M., Butler, and J. Barbara, (2003)“Laboratory evidence of MTBE biodegradation in Borden aquifer material,” Contaminant Hydrology, 60: 229-249.
Schwieger, F., and C. C. Tebbe, (1998) “A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis,” Applied and Environmental Microbiology, 64: 4870-4876.
Selenska, S., and W. Klingmuller, (1991) “DNA recovery and direct detection of Tn5 sequences from soil,” Lett Appl Microb, 13: 21-24.
Selvaratnam, S., B. A. Schoedel, B. L. McFarland, and C. F. Kulpa, (1995) “Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degradation sequencing batch reactor,” Applied and Environmental Microbiology, 61: 3981-3985.
Stocking, A. J., R. A. Deeb, A. E. Flores, W. Stringfellow, J. Talley, R.Brownell, and M. C. Kavanaugh, (2000) “Bioremediation of MTBE: a review from a practical perspective,” Biodegradation, 11: 187-201.
Stach, J. E. M., S. Bathe, J. P. Clapp, and R. G. Burns, (2001) “PCR-SSCP compareson of 16S rDNA sequence diversity in soil DNA obtained using different isolateion and purifyication methods,” FEMS Microbiology Ecology, 36: 139-151.
Smith, F. L., M. T. Suidan, G. A. Sorial, P. Biswas, and R. C. Brenner, (1994) “Trickle-bed biofilter performance: biomass control and N-nutrient effects,” In Proceedings of the Water Environment Federations 67th Annual Confer-ence and Exposition WEF, Alexandria, VA, 11: 553-564.
Somsamak, P., R. M. Cowan, and M. M. Haggblom, (2001) “Anaerobic biotransformation of fuel oxygenates under sulfate-reducing conditions,” FEMS Microbiology Ecology, 37: 259-264.
Song. J., J. Ramirez., and K. A. Kinney, (2003) “Nitrogen utilization in a vapor-phase biofilter,” Water Research, 37: 4497-4505.
Staley, J. T., and A. Konopka, (1985) “Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats,” Annual Review of Microbiology, 39: 321-346.
Steffan, R. J., K. Mcclay, S. Vainberg, C. W. Condee, and D. Zhang, (1997) “Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria,” Applied and Environmental Microbiology, 63: 4216-4222.
Suflita, J. M., and M. R. Mormille, (1993) “Anaerobic biodegradation of known and potential gasoline oxygenates in the terrestrial subsurface,” Environmental Science and Technology, 27: 976-978.
Suthersan, S. S., (1996) “Remediation engineering design concepts,” CRC Press, Inc.
Sperry, K. L., and C. Stanley, (2000)“Field Trial of Biosparging with Oxygen for Bioremediation of Volatile Organic Compounds,”Land Contamination and Reclamation, 8: 367~374.
Spinnler, G. E., J. P. Salanitro, P. M. Manner, and K. A. Lyons, (2001) “Enhanced bioremediation of MTBE at retail gas stations,” Contaminated Soil Sediment and Water Special Oxygenated Fuel Edition, 47-49.
Silva, M. L. B. Da, and P. J. J. Alvarez, (2004) “Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns,” Applied and Environmental Microbiology, 70: 4720-4726.
Tebbe, C. C., and W. Vahjen., (1993) “Interference of humic acid and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast,” Applied and Environmental Microbiology, 59: 2657-2665.
Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing, (1996) “Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable- number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments,” Applied and Environmental Microbiology, 62: 1405-1415.
Trindade, P. O. V., L.G. Sobral, A. C. L. Rizzo, S. G. F. Leite, and A. U. Soriano, (2005) “Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study,” Chemosphere, 58: 515-522.
Torsvik, V., Salte, K, SØrheim, R, GoksØyr, and J., (1990a) “Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria,” Applied and Environmental Microbiology, 56: 776-781.
Torsvik, V., GoksØyr, J, Daae, and F. L, (1990b) “High diversity in DNA of soil bacteria,” Applied and Environmental Microbiology, 56: 782-787.
Tsai, Y., and H. B. Olson, (1992) “Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction,” Applied and Environmental Microbiology, 58: 754-757.
Tsai, Y., and H. B. Olson, (1992) “Detection of low numbers of bacterial cells in soils andsediments by polymerase chain reaction,” Applied and Environmental Microbiology, 58: 754-757.
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi, (2001) “Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost,” Applied and Environmental Microbiology, 57: 555-562.
van E., J. D., V. Mäntynen, and A. C. Wolters, (1997a) “Soil DNA extraction and assessment of the fate of Mycrobacterium chlorophenolicum strain PCR-1 in different soils by 16Sr ibosomal RNA gene sequence based most-probable-number PCR and immunofluorescence,” Biol Fertil Soils, 24: 188-195.
van E., J. D., J. T. Trevors, and M. H. E. Wellington, (1997b) “Modern Soil Microbiology,Marcel Dekker,” New York.
Volossiouk, T., E. J. Robb, and R. N. Nazar, (1995) “Direct DNA Extraction for PCR-Mediated Assays of Soil Organisms,” Applipe and Environmental Microbiology, 61: 3972-3976.
Wang, Y. S., C. Y. Wen, T. C. Chiu, and J. H. Yen, (2004) “Effect of fungicide iprodione on soil bacterial community,” Ecotoxicology and Environmental Safety, 59: 127-132.
Ward, D. M., R. Weller, and M. M. Bateson, (1990) “16S rRNA sequences reveal numerous uncultured microorganisms in a natural community,” Nature, 345: 63-65.
Wagner, M., R. Amann, H. Lemmer, and K. H. Schleifer, (1993) “Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure,” Applied and Environmental Microbiology, 59: 1520-1525.
Wagner, M., B. Assmus, A. Hartmann, P. Hutzler, and R. Amann, (1994) “In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy,” Journal of Microscopy, 176: 181-187.
Wilderer, P. A., (1995) “Technology of Membrane Biofilm Reactors Operated Under Periodically Changing Process Conditions,” War Sci Tech, 31: 173-181.
Wilson, R. D., D. M. Mackay, and K. M. Scow, (2002) “In situ MTBE biodegradation supported by diffusive oxygen release,” Environment Science Technology, 36: 190-199.
Yeh, C. K., and J. T. Novak, (1995) “The effect of hydrogen peroxide on the degradation of methyl and ethyl tert-butyl ether in soils,” Water Environmental Research, 67: 828-834.
Zertuche, L., and R. R. Zall,(1985) “Optimizing alcohol production from whey using computer technology,” Biotechnol Bioeng, 27: 547-554.
Zhou, J., M. A. Bruns, and M. J. Tiedje, (1996) “DNA Recovery from Soils of Diverse Composition,” Applied and Environmental Microbiology, 62: 316-322.
Zhang, W. X., and E. J. Bouwer, (1997) “Biodegradation of benzene, toulene and naphthalene in soil water slurry microcosm. Biodegradation,” 8: 167-175.
Zhuang, W. Q., J-H. Tay, S. Yi, and S. T-L. Tay, (2005) “Microbial adaptation to biodegradeation of tert-butyl alcohol in a sequenceing batch reactor,” Journal of Biotechnology, 118: 45-53.
Zylstra, G. J., (1994) “Molecular analysis of aromatic hydrocarbon degradation,” In Molecular Environmental Biology, ed. S. J. Garte. Lewis Publishers, Boca Raton.
Zoeckler, J. R., M. A. Widdowson, and J. T. Novak, (2003) “Aerobic biodegradation of methyl tert-butyl ether in gasline-contaminated aquifer sediments,” journal of environmental engineering, July, 6429.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top