跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許凱鈞
研究生(外文):kai chun Hsu
論文名稱:以催化臭氧程序處理含有機物廢水之質傳與反應行為研究
論文名稱(外文):The Study on the Mass Transfer and Reaction Behaviors for the Treatment of Organic Wastewaters by Catalytic Ozonation
指導教授:申永順申永順引用關係
指導教授(外文):Yung Shuen Shen
學位類別:碩士
校院名稱:大葉大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:160
中文關鍵詞:質傳係數自解臭氧催化式臭氧程序
外文關鍵詞:ozone of mass transfer coefficientself-decompositionozonationcatalytic ozoantion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要

臭氧程序在水溶液系統之污染物處理的應用中,臭氧質傳與自解對有機物的去除反應有相當大的影響。為瞭解催化式臭氧程序反應系統中觸媒對於臭氧之質傳係數、自解速率常數和反應速率常數的影響,本實驗使用Al2O3、MnO2、SiO2和PAC四種觸媒,在不同反應條件下,分別進行單純臭氧自解與質傳,以及在含有機物(Red 4染料)之氧化反應實驗,於催化式臭氧系統中探討不同觸媒在不同操作條件下,對染料去除行為之影響。
實驗結果顯示各類觸媒之添加對於臭氧之質傳係數略有增加,臭氧自解速率常數以添加PAC時有最佳促進效果。在本研究範圍內,觸媒劑量對於臭氧質傳係數之促進影響不大,但對臭氧自解常數而言,Al2O3與PAC之劑量效應對於臭氧質傳係數之促進情形較為明顯。在低pH條件下,MnO2觸媒對臭氧之促進質傳較為明顯,添加MnO2時,臭氧之質傳係數KLa值約為0.5488min-1,其質傳效果隨pH之升高而降低。PAC觸媒對臭氧之自解反應速率之影響較其他觸媒更為明顯,臭氧自解之速率隨pH值增高而增加,在pH9添加PAC時,臭氧的自解速率常數kd值約為2.3141 min-1。
實驗發現,以PAC觸媒對增進Red 4脫色反應速率之效率最佳,其餘各類觸媒劑量之增加對於Red 4反應速率之促進並不明顯,在高pH值下觸媒之添加可增加Red 4染料之反應速率,顯示臭氧可藉由觸媒之添加,提升OH‧與Red 4之間接氧化作用。本研究提出三種反應模式,可合理說明臭氧結合不同觸媒時,對於水中有機物臭氧化反應機制與反應行為之影響。
ABSTRACT

Mass transfer and self-decomposition behaviors of ozone molecular are the most important factors on the treatment efficiency of ozonation process for decomposing pollutants in aqueous solutions. The purpose of this study is to investigate the effects of catalytic types and amount on the mass transfer and self-decomposition behaviors of ozone molecular under various operational conditions. The catalysis used in this work were Al2O3, MnO2, SiO2, and PAC. The decoloration of Red 4 dye wastewater by ozonation with or without different catalysis was explored to examine the influence of various catalysis on the removal rate of Red 4.
Experimental results showed that mass transfer rate of ozone can be slightly raised by the addition of catalysis, and the most significant one to lift the mass transfer rate was found to be PAC. The promoting effect of catalytic amount of each catalysis on the mass transfer rate of ozone was found to be negligible. However, the promoting effect of catalytic amount of Al2O3 and PAC on the self-decomposition rate of ozone was found to be relatively obvious. At lower pH levels, the promoting effect of adding MnO2 on the mass transfer rate of ozone is noteworthy compared to other catalysis while its value of KLa was determined to be 0.5488min-1. The self-decomposition rate constant (kd) of ozone increased with increasing pH and the value was determined to be 2.3141 min-1 at pH 9.
In the system of the decomposition of Red 4 by ozonation, the promoting effect of adding PAC on the decoloration rate of Red 4 was found to be the largest one compared to other catalysis that those promoting effect was relatively trivial. The reaction rate of Red 4 by ozonation can be raised by adding catalysis at higher pH levels indicating that the indirect oxidation reaction of Red 4 by OH. which is generated by the reaction of ozone and hydroxide ions can be effectively elevated. Three possible reaction models were proposed to reasonably describe the reaction mechanisms of ozone and Red 4 on or off the surface of catalysis in aqueous solutions.
目錄

封面內頁
簽名頁
授權書……………………………………………………………....iii
中文摘要…………………………………………………………....iv
英文摘要…………………………………………………………. ...v
誌謝………………………………………………………………….vi
目錄………………..………………………………..……………...vii
圖目錄………………..……………………………..…………….…x
表目錄………………………………………………..…………....xix
符號說明………………………………………………………..xxiiiv

第一章 前言………………………………………..…………...…1
1.1研究緣起……………………………………..………..1
1.2研究目的…………………………………..…………..2
第二章 理論背景及文獻回顧…………………………………….4
2.1臭氧的自解行為……………………..……………….4
2.2 臭氧的質傳行為…………………………….……….5
2.3 臭氧的反應行為……………………………………..7
2.3.1 金屬氧化物…………………………………..….11
2.3.2 活性碳…………………………………………...15
2.4 催化性臭氧化程序之文獻………………………...20
2.4.1 異相催化性臭氧化系統之相關文獻…………..21
2.4.1.1 Al2O3觸媒………………………………..….21
2.4.1.2 MnO2觸媒…………………………………..25
2.4.1.3 SiO2 觸媒……………………………………26
2.4.1.4 AC 觸媒…………………………………….28
2.4.2 同相催化性臭氧化系統之相關文獻…………30
第三章 研究目的…………………………….…….……….........34
第四章 實驗程序與設備…………………….…….….…...…….36
4.1實驗設備………………………….…….….………..36
4.2實驗藥品………………………………..….………..37
4.3實驗裝置………………………….……….………...38
4.4實驗步驟………………………….…....….………...39
4.5分析測定方法……………………….…………..…..41
第五章 結果與討論……………………………….………….…..46
5.1單純O3自解…………………………….……….…46
5.1.1 無觸媒條件下臭氧之質傳及自解行為…........47
5.1.2 有觸媒條件下臭氧之質傳及自解行為.……...50
5.1.2.1 添加Al2O3觸媒…………….………………50
1.pH效應……………………..….………………..50
2.劑量效應...........................................................52
5.1.2.2 添加MnO2觸媒……….…………….……..57
1.pH效應…………………….……………………57
2.劑量效應…………………….…………….........59
5.1.2.3 添加SiO2觸媒………………………………64
1.pH效應………………………………………….64
2.劑量效應……………………………………......66
5.1.2.4 添加PAC觸媒……………………….………70
1.pH效應………………………………………….70
2.劑量效應………………………………………...72
5.1.2.5 綜合比較……………………………………..76
5.2 以催化臭氧程序處理含Red 4 水溶液
之反應行為…………………………………….……...86
5.2.1 無觸媒條件下有機物之臭氧化反應……........86
5.2.2 有觸媒條件下有機物之臭氧化反應….………87
5.2.2.1添加Al2O3觸媒…………………….…….…88
1.pH效應………………………………….………88
2.劑量效應…………………………….………….93
5.2.2.2添加MnO2觸媒………………………………99
1.pH效應……………………………….…………99
2.劑量效應…………………………………........103
5.2.2.3添加SiO2觸媒……………………..……….109
1.pH效應………………………………………...109
2.劑量效應………………………….……………113
5.2.2.4添加PAC觸媒………………….………..…119
1.pH效應………………………………………...119
2.劑量效應…………………………………........123
5.2.2.5 綜合比較-pH效應……………………..….129
第六章 結果與建議…………………………………………….152
參考文獻………………………………………………………….154
參考文獻

Tong, S. P., Liu, W. P., Leng, W. H., and Zhang Q. Q., ”Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water” , Chemosphere , Vol. 50, pp. 1359-1364 (2003).
Kasprzyk-Hordern, B., Dabrowska, A., Swietlik, J., and Nawrocki, J., “The application of the perfluorinated bonded alumina phase for natural organic matter catalytic ozonation ” , J. Environ Eng. Sci. , Vol. 3, pp. 41-50 (2004).
Kasprzyk-Hordern, B., Andrzejewski, P., and Mawroki, J.,” Ether degradation in water using catalytic ozonation in the presence of perfluorinated alumina”, International Confernce Barcelona (2004).
Park, J. S., Choi, H., amd Cho, J., ” Kinetic decomposition of ozone and para-chlorobenzoic acid (pCBA) during catalytic ozonation” , Water Research Vol. 38, pp. 2285-2292 (2004).
Craeynest, V.K., Dewulf, J., Donck, H., Beuf, D.K., and Langenhove, V.H., ”Application of the peroxone process for the removal of chlorinated volatile organic compounds form waste gases in an advanced oxidative scrubber. Experimental results. ” , International Confernce Barcelona (2004).
Lee, J.E., Jin, B.S., Cho, S.H., Han, S.H., Joo, O.S., and Jung, K.D., ”Catalytic Ozonation of Humic Acids with Fe/MgO” ,Korean J. chem. Eng., Vol. 22, pp. 536-540 (2005).
Ernst, M., Lurot, F., and Schrotter, J.C., “Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide” ,Applied Catalysis B:Environmental, Vol. 47, pp. 15-25 (2004).
Fujita, H., Izumi, J., Sagehashi, M., Fujii, T., and Sakoda, A., “Decomposition of trichloroethene on ozone-adsorbed high silica zeolites” , Water Research, Vol.38, pp. 166-172 (2003).
Fujita, H., Izumi, J., Sagehashi, M., Fujii, T., and Sakoda, A., “Adsorption and decomposition of water-dissolved ozone on high silica zeolites”, Water Research, Vol.38, pp. 159-165 (2004).
Ma, J., Sui, M., Zhang, T., and Guan, C., “Effect of pH on MnOx/GACcatal yzed ozonation for degradation of nitrobenzene”, Water Research, Vol.39, pp. 779-786 (2005).
Lin, J., Kawai, A., and Nakajima, T., “Effective catalysts for decomposition of aqueous ozone”, Applied Catalysis B:Environmental, Vol.39, pp. 157-165 (2002).
Song, S.S., Oh, B.S., Na, S.J., Lee, E.T., and Kang, J.W., “Heterogeneous catalytic ozonation of oxalic acid using Mn-doped GAC as a catalyst”, International Confernce Barcelona (2004).
Einaga, H., and Futamura, S., “Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone”, Applied Catalysis B:Environmental, Vol.60, pp. 49-55 (2005).
Andreozzi, R., Insola, A., Caprio, V., Marotta, R., and Tufano, V., “The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution”, Applied Catalysis A:General, Vol.138, pp. 75-81 (1996).
Beltran, F.J., Rivas F.J., and Montero-de-Espinosa R., “Iron type catalysts for the ozonation of oxalic acid in water”, Water Research, Vol.39, pp. 3553-3564 (2005).
Alebic-Juretic, A., Cvitas, T., and Klasinc, L., “Kinetics of heterogeneous ozone reactions”, Chemospere, Vol.41, pp. 667-670 (2000).
Einaga, H., and Futamura, S., “Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides”, Journal of Catalysis, Vol.227, pp. 304-312 (2004).
Legube, B., and Leitner, N.K.V., “Catalytic ozonation: a promising advanced oxidation technology for water treatment”, Catalytic Today, Vol.53, pp. 61-72 (1999).
Parisheva, Z., and Demirev, A., “Ozonization of ethanolamoine in aqueous medium”, Wat. Res., Vol.34, pp. 1340-1344 (2000).
Andreozzi, R., Insola, A., Caprio, V., and D’Amore, M. G., “The Kineticsof Mn(II)-Catalysed Ozonation of Oxalic Acid in Aqueous Solution”, Wat. Res., Vol. 26, No. 7, pp. 912-917 (1992).
Gracia, R., Araguees, J. L., and Ovelleiro, J. L., “Study of the catalyticozonation of humic substances in water and their ozonation byproducts”, Wat. Res., Vol. 18, No. 3, pp. 195-208 (1996).
Andreozzi, R., Caprio, V., Insola, A., Marotta, R., and Tufano, V., “TheOzonation of Pyruvic Acid in Aqueous Solutions Catalyzed by Suspended and Dissolved Manganese”, Wat. Res., Vol. 32, No. 5, pp. 1492-1496 (1998).
Cortes, S., Sarasa, J., Ormad P,., and Ovelleiro, J. L., “Comparative Efficiency of the Systems O3/high pH and O3/Catalyst for the Oxidation of Chlorobenzens in Water”, Conference of Ozonation and AOPs in Water Treatment, pp. 23-25 (1998).
Ma, J., Graham, and Nigel, J. D., “Degradation of Atrazine by Manganese-catalyzed Ozonation:Influence of Humic Substances”, Wat. Res., Vol. 33, No. 3, pp. 785-793 (1999).
Andreozzi, R., Caprio, V., D`Amore, M. G., Insola, A., and Tufano, V., “Analysis of complex reaction networks in gas-liquid systems , the ozonation of 2-hydroxypyridine in aqueous solutions”, Industrial Engineering and Chemical Research, Vol. 30, pp. 2098-2104 (1991).
Beltra`n, F. J., Garcia-Araya, J. F., and Acedo, B. , ”Advanced oxidation of atrazine in water –Ⅰ. Ozonation”, Water Research, Vol. 28, pp. 2153-2164 (1994).
Beltra`n, F. J., “Theoretical aspects of the kinetics of competitive first order reactions of ozone in the O3/H2O2 and O3/UV oxidation Processes”, Ozone Science & Engineering, Vol. 19, pp. 13-37 (1997).
Benitez, F. J., Beltra`n-Heredia, J., and Gonzalez, T., ” Ozonation of aqueous solution of fenuron ” , Industrial Engineering and Chemical Research , Vol. 30, pp. 2390-2395 (1991).
Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., “ Critical review of rate constants for reaction of hydrated electrons , hydrogen atoms and hydroxyl radicals (‧OH/‧O-) in aqueous solutions”, Journal of Physical Chemistry Rsference Data , Vol. 17, pp. 513-886 (1988).
Gurol, M. D., and Nekouinaini, S., “Kinetic behaviour of ozone in aqueous solutions of substituted phenols”, Industrial Engineering and Chemical Research, Vol. 16, pp. 377-383 (1984).
Haag, W. R. , and Yao, C. C. D., “Rate constants for reaction of hydroxyl radicals with several drinking water contaminants ”, Environmental Science & Technology, Vol. 26, pp. 1005-1013 (1992).
Hoigne, J., Bader H., Haag, W. R., and Staehelin, J., “Rate constants of reaction of ozone with organic and inorganic compounds in water-Ⅲ. Inorganic compounds and radicals”, Water Research , Vol. 19, pp. 993-1004 (1985).
Hoigne, J., and Bader, H., “Ozonation of water : oxidation competition values of different types of waters used in Switzerland”, Ozone Sciwnce and Engineering, Vol. 1, pp. 357-372 (1979).
Hoigne, J., amd Bader, H., “ Ozonation of water : role of hydroxyl radical reactions in ozonation processes in aqueous solution”, Water Research , Vol. 10, pp. 377-386 (1976).
Hoigne, J., and Bader, H., “Rate constants of reaction of ozone with organic and inorganic compounds in water-Ⅰ. Non-dissociated organic compounds ”, Water Research, Vol. 17, pp. 173-183 (1983 a).
Hoigne, J., and Bader, H., “Rate constants of reaction of ozone with organic and inorganic compounds in water-Ⅱ.Dissociated organic compounds ”, Water Research, Vol. 17, pp. 184-195 (1983 b).
Li, K. Y., Kuo, C. H., and Weeks, J. L., ”A kinetic study of ozone-phenol reation in aqueous solution “ , American Institute of Chemical Engineers Journal, Vol. 25, pp. 583-591 (1979).
Minchew, E. P., Gould, J. P, and Saunder, F. M., ”Multistage decomposition kinetics of ozone in dilute aqueous solutions“ , Ozone Sciwnce & Engineering , Vol. 9, pp. 165-177 (1987).

胡冠華,「以三(正辛基)胺硫酸鹽萃取酚之質傳研究」,博士論文,清華大學化學工程研究所 (1992)。
楊平義, 「金屬離子對臭氧化分解2-氯酚效能增進之探討與研究」,碩士論文,國立交通大學環境工程研究所 (1999)。
賴朝文,「新型捲氣式反應器之臭氧質傳研究」,碩士論文,國立台灣科技大學化學工程研究所 (1999)。
方長福,「染整廢水以新型反應器進行臭氧脫色研究」,碩士論文,國立台灣科技大學化學工程研究所 (1997)。
陳修斌,「氣泡形成對臭氧質傳及其對含 2-氯酚水溶液分解反應行為之影響」,碩士論文,國立台灣科技大學化學工程研究所 (2000)。
林奇璋,「以紫外線/臭氧程序處理染料廢水之光反應器設計研究」,碩士論文,私立大葉大學環境工程研究所 (2002)。
柯雅雯,「臭氧處理對自來水中消毒副產物與有機前質之去除研究」,國立台灣大學環境工程學研究所博士論文 (1999)
徐新華,趙傳榮,「水與廢水的臭氧處理」, 化學工業出版社 (2003)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top