跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/29 04:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林明岳
研究生(外文):Ming-yech Lin
論文名稱:台灣中西部沖積地層橋址土壤液化沉陷量評估
論文名稱(外文):Evaluation of Liquefacient Settlement for Alluvium Strata of the Bridge Sites in Central West Taiwan
指導教授:許澤善許澤善引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:土木工程所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:121
中文關鍵詞:液化沉陷量
外文關鍵詞:Liquefacient Settlement
相關次數:
  • 被引用被引用:6
  • 點閱點閱:579
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
臺灣中西部沖積地層上橋梁數量甚多,為瞭解橋址在土壤液化後可能產生的地表沉陷量,作者針對本區域內西濱快速公路,蒐集相關地質鑽探資料,藉以進行液化沉陷量評估。
本文液化沉陷量評估中,所採用之設計地震規模為地震矩Mw=7.984,設計斷層為彰化斷層,而液化潛能評估方法計有Seed(1996)簡易計算分析法、Tokimatsu & Yoshimi(1983)簡易計算分析法及日本道路橋協會(1982)簡易計算分析法等三種,利用指導教授修正Ishihara(1993)所提液化沉陷量評估方法進行液化沉陷量之評估。本論文中作者亦採用921集集大地震中已發生之液化沉陷量,藉以驗證所採用之三種液化潛能評估方法之適用性。
研究結果顯示:(一)基於Seed法所得液化沉陷量有高於其他兩種方法所得結果之傾向;(二)研究範圍內橋址之液化沉陷量分佈狀況:以台中港段及彰化漢寶段(員林大排以北)之平均沉陷量較大,其數值分別為90公分及60公分;中彰大橋段平均沉陷量為30公分;而通霄苑裡段及西濱大橋路段地表沉陷量則為10公分以內;(三)由921集集大地震中所發生之液化沉陷量與評估所得液化沉陷量之比較,驗證Seed法有優於T-Y法及JRA法之傾向。
由於本區多數橋址為群樁基礎,橋址之液化沉陷量發生時,液化土層將對群樁產生負磨擦力,進而危害群樁基礎,因此對於地震中可能發生液化地區之橋梁設計,建議進行地層改良或將考慮負摩擦力列入設計考量。
Abstract
On the alluvial stratum in central west Taiwan, there are many bridges. To investigate the settlements for the ground surfaces near the sites of bridges that may occur after the liquefaction of soils, the author collected relevant geological drilling information for the route along the Hsipin Highway so as to evaluate the liquefaction settlements.
In evaluating liquefaction settlements, the design earthquake magnitude is MW=7.984, which is related to ML=7.3, and the design fault is the Changhua one. In addition, the author adopted three types of simple computation methods proposed by Seed (1996), Tokimatsu & Yoshimi (1983) and Japan Road & Bridge Association (1982), respectively, to evaluate of liquefaction potentials. Thereafter, liquefaction settlements were evaluated by adopting the method revised by the advisor of this research from the one proposed by Ishihara (1993). The author of this thesis also utilized some real liquefaction settlements occurred in the 921 Chi-Chi Earthquake to verify the suitability for adopting the three methods for evaluating the liquefaction potentials.
The results obtained from this research show that (1) The liquefac-
tion settlements obtained by using the method proposed by Seed tend to be greater than those obtained by using the other two methods; (2) Within the domain of this research, the distributions of the liquefaction settlements near the sites of bridges are addressed as follows: the average settlements for the sections of the Taichung port and Changhua-Hanpao (north of the Yuanlin drainage river) are greater. Their values are around 90cm and 60cm respectively. The average settlement for the Chungchang
Bridge is about 30cm. The settlements for the sections of Tunghsiao-
Yuanli and Hsiping Bridge are smaller than 10cm; (3) By comparing the liquefaction settlements occurred in the 921 Chi-Chi Earthquake and the predicted ones obtained from the three adopted methods, it is verified that the method proposed by Seed is better than those proposed by Tokimatsu & Yoshimi and Japan Road & Bridge Association.
As most of the bridges in this area are founded by group piles, negative skin frictions of piles will then be induced when liquefaction settlements occur in liquefied soil strata. Such an effect will therefore endanger the safety of group piles. Thus, on the bridge design in the area that liquefaction may occur during an earthquake, it is suggested to conduct site improvement or to take the effect of negative skin frictions into design considerations.
目 錄
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………II
誌謝……………………………………………………………………IV
目錄……………………………………………………………………V
表目錄………………………………………………………………VIII
圖目錄…………………………………………………………………X
照片目錄………………………………………………………………XIII
符號說明……………………………………………………………XIV
第一章 緒論……………………………………………………………1
1.1 研究動機………………………………………………………1
1.2 研究目的………………………………………………………3
1.3 研究步驟………………………………………………………4
第二章 文獻回顧 ……………………………………………………11
2.1 液化的定義 …………………………………………………11
2.2 液化發生的機制 ……………………………………………12
2.3 液化類型與液化現象………………………………………13
2.3.1液化類型……………………………………………………13
2.3.2 液化現象……………………………………………………14
2.4 影響液化的因素 ……………………………………………16
2.4.1 土壤特性……………………………………………………16
2.4.2 土層特性……………………………………………………18
2.4.3 地震特性……………………………………………………19
2.5 地震規模之轉換……………………………………………20
2.6 液化潛能的評估方法 ………………………………………23
2.6.1 簡易準則分析法 …………………………………………23
2.6.2 總應力分析法 ……………………………………………24
2.6.3 有效應力分析法 …………………………………………25
2.6.4 簡易計算分析法 …………………………………………25
2.7 液化指數PL…………………………………………………43
2.8 液化後地表沉陷量之理論…………………………………44
2.8.1 液化安全係數與最大剪力應變量γmax之關係……………45
2.8.2 最大剪力應變量γmax與液化後體積應變εv之關係………47
2.9 液化後地表沉陷量之分析…………………………………47
2.9.1 分析模式建立(紀雲曜,1997)………………………………48
2.9.2 液化沉陷量分析模式之驗證………………………………51
第三章 研究內容與方法………………………………………………57
3.1 研究內容……………………………………………………57
3.2 研究方法……………………………………………………58
3.2.1 現地鑽探試驗資料之蒐集…………………………………58
3.2.2 橋址地質概況及各點位座標………………………………60
3.2.2.1 通霄苑裡路段(孔號:A1~A32)…………………………60
3.2.2.2 台中港路段(孔號:B1~B32) ……………………………61
3.2.2.3 中彰大橋路段(孔號:C1~C17) …………………………63
3.2.2.4 彰化漢寶路段(孔號:D1~D68) …………………………65
3.2.2.5 西濱大橋路段(孔號:E1~E27) …………………………65
3.2.3 地震參數之決定……………………………………………68
3.2.3.1 設計地震規模……………………………………………68
3.2.3.2 各橋址距設計斷層之最近距離…………………………69
3.2.3.3 各孔位水平最大地表加速度 ………………………73
3.2.4 橋址地層之液化潛能評估…………………………………75
3.2.5橋址地層液化後地表沉陷量之研究方法…………………75
3.2.5.1 最大剪力應變γmax………………………………………75
3.2.5.2 液化後體積應變εv………………………………………76
3.2.5.3 各孔位液化後地表沉陷量之推估方法…………………78
3.2.6橋址地層液化後沉陷量分析模式之驗證…………………81
第四章 結果之比較與討論……………………………………………84
4.1 液化安全係數FL評估結果…………………………………84
4.2液化潛能指數PL評估結果……………………………………88
4.3各孔位液化沉陷量之比較與探討……………………………98
4.3.1各孔位液化沉陷量之比較…………………………………103
4.3.1.1通霄苑裡段各孔位液化沉陷量之比較…………………103
4.3.1.2台中港段各孔位液化沉陷量之比較……………………104
4.3.1.3中彰大橋段各孔位液化沉陷量之比較…………………105
4.3.1.4彰化漢寶段各孔位液化沉陷量之比較…………………105
4.3.1.5西濱大橋路段各孔位液化沉陷量之比較………………105
4.3.2鄰近各橋址液化沉陷量分析結果之綜合討論……………107
4.4液化指數PL與液化沉陷量之關係…………………………107
4.5基於不同方法所得液化沉陷量分析結果之比較…………109
4.6液化沉陷量評估流程之驗證………………………………111
第五章 結論與建議…………………………………………………113
5.1 結論…………………………………………………………113
5.2 建議…………………………………………………………114
參考文獻………………………………………………………………116
附錄1:Seed簡易計算分析法評估結果……………………………122
附錄 2:T-Y 簡易計算分析法評估結果……………………………182
附錄3:JRA 簡易計算分析法評估結果……………………………236
參考文獻
【1】鄭文隆、吳偉康,土壤液化之災害型態與現地研判,地工技術,第90期,PP.90~103,(1985)。
【2】鍾毓東,謝百錘,「簡易土壤分析方法」,結構工程,第一卷,第三期,(1986)。
【3】「台17線新西螺橋橋基鑽探工程鑽探報告書」,大合鑽探技術顧問顧問股份有限公司,(1989)。
【4】夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,(1992)。
【5】「西濱快速公路台中港特定區路段工程地質鑽探工程報告書」,林同棪工程顧問股份有限公司,(1993)。
【6】「西濱快速公路中彰大橋南端至鹿港外環線(166K+028-181K
+228)段新建工程地質探查報告」,林同棪工程顧問股份有限公司,(1995)。
【7】鄭世楠,「台灣及其鄰近地區大地應力分析之研究」,博士論文,國立中央大學地球物理研究所,(1995)。
【8】紀雲曜,「高雄縣永安沿海地區沖積層下陷及其潛能評估方法之研究」,博士論文,國立成功大學土木工程研究所,(1997)。
【9】張博鑫,「布袋港海埔新生地液化潛能評估及液化後沉陷預測」,碩士論文,國立成功大學土木工程研究所,(1997)。
【10】中央研究院地球科學研究所網站,「地震災害照片」,(2000)。
【11】「西濱快速公路189K+420-190K+028(WH49標)彰28線至漢寶段新建工程地質探查報告書」,嘉進地質大地技師事務所,(2000)。
【12】張伸豪,「軟弱地盤之液化特性與沉陷量分析」,碩士論文,國立成功大學土木工程研究所,(2000)。
【13】國家地震工程研究中心,臺灣大學防災國家型科技計劃辦公室、中華民國大地工程學會,「921集集大地震大地工程震災調查報告」,(2000)。
【14】賴宏源,「九二一集集地震中部地區土壤液化案例之研究」,碩士論文,國立成功大學土木工程研究所,(2000)。
【15】「台17線中彰大橋重建工程地質探查報告」,財團法人中華顧問工程司,台北,(2001)。
【16】「台17線中彰大橋液化潛能分析鑽探工程地質探查報告」,快益有限公司,(2001)。
【17】「西濱快速公路WH33-1〜WH33-4標通灣〜苑港(123K+800-
130K+905)段新建工程地質探查報告」,中華顧問工程司,(2001)。
【18】吳正川,「地層沉陷量預測」,碩士論文,逢甲大學,(2001)。
【19】「西濱快速公路WH32-1標(127K+450-129K+246)五北〜五南段新建工程委託鑽探工作地質探查報告」,長豐土木結構大地技師事務所,(2002)。
【20】葉永田,「台灣西部地區地震斷層與地變動分析的研究(Ⅰ)」,清雲科技大學通識教育中心,(2003)。
【21】許澤善,「台61線中彰大橋橋址液化潛能評估委託研究計畫」,逢甲大學,(2004)。
【22】廖展豐,「砂質土層承受地震荷重之試驗沉陷分析與數值模擬」,碩士論文,國立成功大學土木工程研究所,(2004)。
【23】王崑榮,「台灣中部地區橋址液化潛能評估」,碩士論文,逢甲大學,(2005)。
【24】侯義順,「以SPT-N為基礎之液化潛能評估程序及其驗證」,碩士論文,逢甲大學,(2005)。
【25】Chung, Y. C. and Wong, I. H.,〝Liquefaction Potential of Soils with Plastic Fines,〞Soil Dynamics and Earthquake Engineering Conference, Southampton, July (1982).
【26】David F. Mc Carthy 〝Essentials of Soil Mechanics and Foundations, 〞 Basic Geotechniques, pp. 3-61 (2002).
【27】〝EQE Summary Report for Kobe Earthquake,〞EQE International. USA.(1995).
【28】Hamada, M and T. D. O’Rourke, 〝Large Ground Deformations and Their Effects on ; Lifelines : 1964 Niggata Earthquake, 〞 Case Studies of Liquefaction and Lifeline Performance During Post Earthquakes, Vol.2,(1992).
【29】Hamada, M., R. Isorama, and K. Wakamatsu, 〝Liquefaction
-Induced Ground Displacement and its Related Damage to
Lifeline Facilities, 〞 Special Issue of Soils Foundations,
pp.81~97,(1996).
【30】Idriss, I.M., 〝Evaluating Seismic Risk in Engineering Practice, 〞Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol.1, pp.255~320. (1985).
【31】Ishihara, K. Sodekawa, M., and Tanaka, Y., 〝Effect of Over consolidation on Liquefaction Characteristics of Sand Containing Fine, 〞 Dynamic Geotechnical Test, ASCE, Stp 654, American Society for Testing and Materials, pp. 246~264. (1978).
【32】Ishihara, K., 〝Stability of Natural Deposit During Earthquakes, 〞Proc., 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1. pp. 321~376. (1985).
【33】Ishihara, K. and Yoshimine, M., 〝Evaluation of Settlements in Sand Deposits Following Liquefaction during Earthquakes, 〞 Soils and Foundations, Vol.32,(1992).
【34】Ishihara, K., 〝Liquefaction and Flow Failure During Earthquak-
es ,〞 Geotechnique, Vol. 43. No3. pp. 351~415. (1993).
【35】Iwasaki, T., F. Tatsuoka, K. Tokida and S. Yasuda, 〝A Practical Method for Assessing Soil Liquefaction Potential Based on Case Studies at Various Sites in Japan, 〞Proceedings of 2nd International Conference Microzonation for Safety Construct Research and Application, Vol.2,(1978).
【36】Iwasaki, T., T. Arakawa, and K. Tokida, 〝Simplified Procedures for Assessing Soil Liquefaction During Earthquakes, 〞Soil Dynamics and Earthquake Engineering Conference, Southampton, pp. 925~939. (1982).Kishida, H., 〝Characteristics of Liquefied Sands During Mino Owari, Tohnankai and Kikui Earthquake, 〞Soils and Foundations, JSM-FE, vol. 9, no.1 (1969).Lee, K. L. and Albraisa, A., 〝Earthquake-Induced Settlements in Saturatedn Sands, 〞(1974).
【39】Liang, R. W., Bi, X. H., and Wang, J. C. 〝 Effect of Clay Particle Content Liquefaction of Soil. 〞Proceedings, 12th World Conferen-
ce on Earthquake Engineering, Auckland, New Zealand. (2000).
【40】Liao, S. and Whitman, R. V., 〝Overburden Correction Factors for SPT in Sand, 〞 Journal of Geotechnical Engineering, ASCE, Vo1. 112, No. 3, pp. 373~377 (1986).
【41】Mori, K., Seed, H. B., and Chan, C. K., 〝Influence of Simple Disturbance on Sand Response to Cyclic Loading, 〞Report No. EERC 77-03, U. C. Berkeley Earthquake Engineering Research Center. (1975).
【42】Nagase, H., and Ishihara, K., 〝Liquefaction-Induced Compaction and Settlement of Sand during Earthquakes, 〞 Soils and Found-
ations. Vol.28, No1., pp.65~76, March,(1988).
【43】Peacock, W. H., and Seed, H. B., 〝Sand Liquefaction Under Cyclic Loading Simple Shear Conditions, 〞 Journal of The Soil Mechanic and Foundations Division, ASCE, Vol.94. No SM3, pp. 689~708. (1968).
【44】Ross G. A., Seed H. B., and Migliaccio R. R. 〝Bridge Foundation in Alaska Earthquake, 〞Journal of The Soil Mechanics and Foundation Division, ASCE, Vol.95, No. SM3, Proc. Paper 4223. (1969).
【45】Scott, R. F., 〝The Calculation of Horizontal Accelerations from Seismoscope Recodes, 〞Bulletin of Seismological Society of America, Vol.63,No.5,(1973).
【46】Seed, H. B. and Idriss, I. M., 〝Analysis of Soil Liquefaction Niigata Earthquake, 〞Journal of The Soil Mechanic of Foundations Division, ASCE, Vol 93, NO, SM3, pp. 83~108. (1967)
【47】Seed, H. B. and I. M. Idriss, 〝Simplified Procedure for Evaluating Soil Liquefaction Potential, 〞Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249~1273, (1971).
【48】Seed, H. Bolton, 〝Evaluation if Soil Liquefaction Effects in Level Ground during Earthquakes,〞Liquefaction Problems in Geotechnical Engineering , pp. 1~104 (1976).
【49】Seed, H. B., K. Tokimatsu, L. F. Harder, and R. M. Chung, 〝Influence of SPT procedures in soil liquefaction resistance evaluation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp. 1425~1445, (1985).
【50】Tatsuoka, F., Sasaki, T., and Yamada, Y.〝 Settlement in Saturated Sands Induced by Cyclic Undrained Simple Shear. Eighth World Conference on Earthquake Engineering,〞Vol.3, pp.95~102. (1984).
【51】Tokimatsu, K. and Y. Yoshimi, 〝Empirical Correlation of Soil Liquefaction Based on SPT-N Value and Fines Content, 〞 Soils and Foundations, Vol. 23, No. 4, pp. 56~74, (1983).
【52】Wong R. T., Seed H. B., and Chan C.K.〝Cyclic Loading Lique-faction of Ravelly Soils.〞Journal of The Soil Mechanics and Foundation Division, ASCE, Vol. 101, N. SM6, pp. 571~583. (1975).
【53】Xia H., and Hu T.〝Effects of Saturation and Back Pressure on Sand Liquefaction,〞Journal of Geotechnical Engineering, ASCE. Vol. 117, No.9, pp. 1362~1374. (1991)
【54】Yasuad, S., K. Ishihara, K. Harada and N. Shinkawa,〝Effect of Soil Improvement on Ground Subsidence Due to Liquefaction,〞(1996).
【55】Youd, T. L., and Idriss, L. M.,〝Liquefaction Resistance of Soils: Summary Report form the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,〞(2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top