跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/26 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡靜
研究生(外文):Yi-Ching Chen
論文名稱:鈀合金膜反應器進行乙醇自熱化重組產氫之可行性評估研究
論文名稱(外文):A Feasibility Study on Hydrogen Production from Autothermal Reforming of Ethanol in a Palladium-Based Alloy Membrane Reactor
指導教授:張新福張新福引用關係
指導教授(外文):H. F. Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:105
中文關鍵詞:乙醇鈀銀合金膜氫氣自熱化重組反應
外文關鍵詞:Palladium-Silver Alloy MembraneAutothermal Reforming ReactorHydrogenEthanol.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用乙醇、水和氧氣在鈀銀合金膜反應器中進行乙醇自熱化重組反應,以在膜管的滲透端收集到高純度的氫氣。本實驗所使用的鈀銀合金膜管是以無電鍍法自製而成,其膜厚約為21μm。操作溫度範圍為623 K~723 K,壓力控制範圍2 ~ 9 atm,使用觸媒為MDC-3商用鋅銅觸媒。乙醇與水的進料莫耳比為1:2.2(nH2O/nEtOH=2.2);氧氣和乙醇的莫耳比為nO2/nEtOH=0.3與nO2/nEtOH=0.4;WHSV=5h-1。由實驗發現,nO2/nEtOH=0.3為吸熱反應,nO2/nEtOH=0.4為放熱反應,在高溫低壓時皆有較高的乙醇轉化率。同時,nO2/nEtOH=0.4皆比nO2/nEtOH=0.3有較高的轉化率。CO、CO2選擇率及產率的部分,nO2/nEtOH=0.4亦較nO2/nEtOH=0.3為高。
The study is to make use of ethanol, water and oxygen to proceed autothermal reforming of ethanol in a palladium-silver alloy membrane reactor in order to collect the hydrogen with high purity on the permeation side. The palladium-silver alloy membrane tube used for this experiment was made by electroless plating technique, with an overall thickness of about 21μm. The reaction temperatures ranged from 623 ~ 723 K and the pressures between 2 to 9 atm. The commercial zinc copper catalyst MDC-3 was employed for autothermal steam reforming of ethanol reaction.The reactant of water/ethanol molar ratio was 2.2:1, the oxygen/ethanol molar ratio was 0.3 or 0.4 and WHSV was 5h-1.It is found that when nO2/nEtOH is 0.3 the reaction is endothermic, while nO2/nEtOH is 0.4 the reaction is exothermic, and both of which exhibit a higher ethanol conversion ratio at higher temperatures and lower pressures; the ethanol conversion is higher at nO2/nEtOH =0.4 than at nO2/nEtOH =0.3. Besides, the selectivities and yields to CO and CO2 at nO2/nEtOH =0.4 are higher than at nO2/nEtOH =0.3.
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅶ
表目錄 XⅡ
一、前言 1
二、原理 7
2.1 薄膜簡介 7
2.2 薄膜類型 8
2.2.1 多孔型薄膜 8
2.2.2 緻密型薄膜 9
2.3 膜反應器應用型態分類 10
2.3.1 產物移出型膜反應器 10
2.3.2 控制進料型膜反應器 11
2.3.3 催化活性型膜反應器 12
2.4 無機膜的特性與應用 13
2.4.1 無機膜的優點 13
2.4.2無機膜的缺點 14
2.4.3 無機膜的應用型態 14
2.4.3.1 無機膜反應器中薄膜特性要求 15
2.5 鈀膜特性 16
2.5.1 鈀銀合金的氫氣滲透特性 17
2.5.2 鈀銀合金膜的類型 22
2.5.2.1 孔洞膜流動 22
2.5.2.2 緻密膜穿透 23
2.6 氫原子的傳送機構 24
2.7 鈀膜製備方法 27
2.7.1 化學氣相沈積(chemical vapor deposition,CVD) 27
2.7.2 濺鍍法(sputtering) 28
2.7.3 溶膠凝膠法(Sol-Gel) 28
2.7.4 無電鍍(electroless plating) 28
2.7.4.1 無電鍍法的優點 31
2.8 乙醇自熱化重組反應 32
2.9 實驗數據的定義 35
三、實驗方法與步驟 37
3.1 實驗儀器裝置 37
3.2 反應產物之特性分析 40
3.2.1 反應氣相、液相產物檢量線製作 40
3.3 乙醇自熱化重組反應實驗步驟 42
3.4 實驗反應器 43
3.5 鈀銀合金膜之滲透選擇率 44
3.6 藥品 45
3.6.1 反應氣相、液相產物檢量線製作,使用之藥品 45
3.6.2 反應系統中,使用之藥品 46
3.6.3 反應使用之觸媒 47
3.6.4 其他 47
3.7 儀器裝置 48
四、結果與討論 52
4.1 鈀銀合金膜管特性 50
4.2鈀銀膜反應器進行乙醇自熱化重組反應 54
4.2.1 空白實驗 54
4.2.2 自熱化條件計算 55
4.2.3 不同通氧比率對乙醇轉化率的影響 56
4.2.4 不同通氧比率對CO和CO2選擇率的影響 61
4.3 鈀銀膜反應器氫氣滲透通量 69
4.3.1 氫氣滲透通量趨勢及現象 69
4.4 傳統反應器進行乙醇自熱化重組反應 73
4.4.1傳統與膜反應器乙醇自熱化重組反應結果比較 75
4.5 觸媒分析 80
五、結論 84
六、參考書目 86
1.李禹琳等,“能源新探”,商務印書館(1978)。
2.Chang, K. Y., Lin, W. H. and Chang, H. F., “Simulation of Hydrogen Production from Dehydrogenation of Ethanol in a Palladium Membrane Reactor,” J. Chin. Inst. Chem. Engrs., 33, 225 (2002).
3.Lin, W. H. and Chang, H. F., “A Study of Ethanol Dehydrogenation Reaction in a Palladium Membrane Reactor,” Catal. Today, 97, 181 (2004).
4.Lin, W. H. and Chang, H. F., “Permeation Mechanisms of Hydrogen through Pd-Ag Membranes,” J. Chin. Inst. Chem. Engrs., 35, 539 (2004).
5.Lin,W. H. and Chang, H. F., “Characterization of Pd-Ag Membrane Prepared by Sequential Electroless Deposition,” Surf. Coat. Technol., 194, 157 (2005).
6.Liu, Y. C., Lin, W. H., Wang, W. H. and Chang, H. F., “Auto-thermal Reaction of Ethanol through Pd-Ag Membrane Reactor Prepared by Sequential Electroless Deposition,” Stud. Surf. Sci. Catal., 159, 817 (2006).
7.林有銘,“薄膜反應器在石化製成上的應用化工技術”,第7卷第11期,218-228 頁 (1999)。
8.Deluga, G. A., Salge, J. R., Schmidt, L. D. and Verykios, X. E., “Renewable Hydrogen from Ethanol by Autothermal Reforming.” Science, 303, 993 (2004)
9.Saracoo, G. and Specchia, V., “Catalytic Inorganic-Membrane Reactor: Present Experience and Future Opportunities,” Catal. Rev. Sci Eng., 36, 305 (1994).
10.Yeung, K. L. and Varma, A., “Novel Preparation Techniques for Thin Metal-Ceramic Composite Membrane,” AIChE J., 41, 2131 (1995).
11.Grashoof, G. J., Pilkington, C. E. and Corti, C. W., “The Purification of Hydrogen,” Platinum Metals Review, 27, 157 (1983).
12.Philpott, J. E., “Hydrogen Diffusion Technology,” Platinum Metals Review, 29, 12 (1985).
13.Ilias, S. and Govind, R., “Development of High Temperature Membranes for Membrane Reactor: An Overview,” AIChE Symposium Series, 85, 18 (1989).
14.Li, A., Liang, W. and Hughes, R., “Characterization and Permeation of Palladium / Stainless Steel Composite Membranes,” J Membrane Sci, 149, 259 (1998).
15.Hsieh, H. P., “Inorganic Membranes For Separation and Reaction,” Elsevier Science (1996).
16.Itoh, N., “Properties of a Composite Charged Reverse Osmosis Membrane,” Int. Congr. Membr. Processes, Tokyo Japan, 352 (1987).
17.林有銘,“薄膜反應器在石化製成上的應用化工技術”,第7卷第11期,218-228 頁 (1999)。
18.鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司 (2003)。
19.Kragl, U., “Asic Principles of Membrane Technology,” Angew. Chem. Int. Edit., 36, 2129 (1997).
20.Shu, J., B. Grandjean, P. A., A. Neste, V. and Kaliaguine, S., “Catalytic Palladium-Based Membrane Reactor - A Review,” Can. J. Chem. Eng., 69, 1036 (1991).
21.Tosotsis, T. T.,Champagnie, A. M., Vasileiadis, S. P., Ziaka, Z. D. and Minet, R. G., “The Enhancement of Reactor Yield Through The Use of High Temperature Membrane Reactors,” Separ. Sci. Technol, 28, 397 (1993).
22.Mardilovich, P. P., She, Y. and Ma, Y. H.,“Defect-Free Palladium Membrane on Porous Stainless Steel Support,” AIChE J., 44, 3101 (1998).
23.Yeung, K. L., Arvind, R., Zawada, R. J. X., Szegner, J., Cao, G. and Varma, A., “Nonuniform Catalyst Distribution for Inorganic Membrane Reactors: Theoretical Consideration and Preparation Techniques,” Chem. Eng. Sci., 49, 4823 (1995).
24.Yeung, K. L. and Varma, A., “Novel Preparation Techniques for Thin Metal-Ceramic Composite Membrane,” AIChE J., 41, 2131 (1995).
25.葉惠娟,“無機薄膜反應器”,專題講座,第1卷,第3期,32-41頁(1992)。
26.Lewis, F. A. “The Palladium Hydrogen System,” Academic Press, London (1967).
27.Itoh, N., “A Membrane Reactor Using Palladium,” AIChE J., 33, 1576-1578 (1987).
28.Gobina, E. and Hughes, R., “Ethane dehydrogenation Using a High Temperature Catalytic Membrane Reactor,” J. Membrane Sci., 90, 11 (1994).
29.Buxbam, R. E. and Marker, T. L., “Hydrogen Transport through Non-porous Membranes of Palladium-coated Niobium, Tantalum and Vanadium,” J. Membrane Sci., 85, 29-38 (1993).
30.Yan, S. C., Meada, H., Kusakabe, K. and Morooka, S., “Thin Palladium films Formed in Support Pore by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation,” Ind. Eng. Chem. Res., 33, 616 (1994).
31.林有銘,周窈朱,莊鉦賢,劉淑鈴,黃家銘,林修正“新型氫氣生產製程開發暨應用”工業技術研究院能源與資源研究所 (1998)。
32.Uemiya, S., Matsuda, T. and Kikuchi, E., “Hydrogen Permeable Palladium-silver Alloy Membrane Supported Porous Ceramics,” J. Membrane Sci, 56, 315 (1991).
33.Sue, J., Grandjean, B. P. A., Ghali, E. and Kaliaguine, S.,“Simultaneous Deposition on Pd and Ag on Porous Stainless stell by Electroless Plating,” J. Membrane. Sci., 77, 181 (1993).
34.Uemiya, S., “State-of-the-Art of Supported Metal Membranes for Gas Separation,” Separation and purification Methods, 28, 51 (1999).
35.Huang, T.-C., Wei, M.-C. and Chen, H.-I., “Permeation of hydrogen through palladium /alumina composite membrane,” Separation Science and Technology, 36, 199 (2001).
36.Barrer, R. M., “Diffusion in and trough Solids,” Cambridge University Press, London (1951).
37.Itoh, N., Shindo, Y. and Haray, K., “Ideal Flow Models For Palladium Membrane Reactors,” J. Chem. Eng. Jan., 23, 420 (1990).
38.Xomeritakis, G. and Lin, Y. S., “Fabrication of a Thin Palladium Membrane Supported in a Porous Ceramic Substrate by Chemical Vapor Deposition,” J. Membrane. Sci., 120, 261 (1996).
39.Kikuchi, E., “Steam Reforming of Methane in Membrane Reactor: Comparison of Electroless-Plating and CVD Membrane and Catalyst Packing Modes,” Catal. Today, 56, 75 (2000).
40.McCool, B., Xomeritakis, G. and Lin, Y. S., “Composition Contril and Hydrogen Permeation Characteristics of Sputter Deposited Palladium-Silver Membranes,” J. Membrane Sci., 161, 67 (1999).
41.黃定加,陳慧英,「陶瓷薄膜」,化工,40,3(1993)。
42.蔣孝澈,「溶凝膠製作與應用專輯」,化工,46,12(1999)。
43.Collins, J. P. and Way, J. D., “Preparation and Characterization of Composite Palladium-Ceramic Membrane,” Ind. Eng. Chem. Res., 32, 3006 (1993).
44.Govind, R. and Atnoor, D., “Development of a composite Palladium Membrane for Selective Hydrogen Separation at High Temperature,” Ind. Eng. Chem. Res., 30, 591 (1991).
45.Yeung, K. L., Sebastian, J. M. and Varma, A., “Novel Preparation of Pd/Vycor Composite Membranes,” Catal. Today, 25, 231 (1995).
46.Li, A., Xiong, G. X., Gu, J. H. and Zheng, L. B., “Preparation of Pd / Ceramic Membrane 1.Improvement of the Conventional Preparation Technique,” J. Membrane Sci., 110, 257 (1996).
47.Pacheco Tanaka, D. A., Llosa Tanco, M. A., Niwa, S.-i., Wakui, Y., Mizukami, F., Namba, T. and Suzuki, T. M., “Preparation of Palladium and Silver Alloy Membrane on a porous α-alumina Tube via Simultaneous Electroless Plating,” J. Membrane Sci., 247, 21 (2005).
48.Yang, L., Zhang, Z., Gao, X., Guo, Y., Wang, B., Sakai, O., Sakai, H. and Takahashi, T., “Changes in Hydrogen Permeability and Surface State of Pd-Ag/ceramic Composite Membranes after Thermal Treatment,”J. Membrane Sci., 252, 145 (2005).
49.Su, C., Jin, T. and Kuraoka, K., “Thin Palladium Film Supported on SiO2-Modified Porous Stainless Steel for a High-Hydrogen-Flux Membrane,” Ind. Eng. Chem. Res. 44, 3053 (2005).
50.Deluge, G. A., Salge, J. R., Schmidt, L. D. and Verykios, X. E., “Renewable Hydrogen from Ethanol by Autothermal Reforming,” Science, 303, 993 (2004).
51.Witjens, L. C., Bitter, J. H., van Dillen, A. J., Aronldbik, W. M., Habraken, F. H. P. M., and de Jong, K. P., “Improving the Control of Electroless Plating Synthesis of Pd/Ag Membrance for Hydrogen Separation Using Rutherford Backscattering,” J. Membrane Sci., 254, 241 (2005).
52.Tong, J., Su, C., Kuraoka, K., Suda, H. and Matsumura, Y., “Prepartion of Thin Pd Membrane on CeO2-modified Porous Metal by a Combined Method of ElectrolessPlating and Chemical Vapor Deposition,” J. Membrane Sci., 269, 101 (2006).
53.Tong, J., Suda, H., Haraya, K. and Matsumura, Y., “A Novel Method for the Preparation of Thin Dense Pd Membrane on Macroporous Stainless Steel Tube Filter,” J. Membrane Sci., 260, 10 (2005).
54.Tong, J., Shirai, R., Kashima, Y. and Matsumura, Y., “Preparation of a Pinhole-free Pd-Ag Membrane on a Porous Metal Support for Pure Hydrogen Separation,” J. Membrane Sci., 260, 84 (2005).
55.Yepes, D., Cornaglia, L. M., Irusta, S. and Lombardo, E. A., “Different Oxides Used as Diffusion Barriers in Composite Hydrogen Permeable Membranes,” J. Membrane Sci., 274, 92 (2006).
56.Gao, H., Lin, J. Y. S., Li, Y. and Zhang, B., “Electroless Plating Synthesis,Characterization and Permeation Properties of Pd-Cu Membranes Supported on ZrO2 Modified Porous Stainless Steel,” J. Membrane Sci., 265, 142 (2005).
57.Klouz, V., Fierro, V., Denton, P., Katz, H., Lisse, J. P., Bouvot-Mauduit, S. and Mirodatos, C., “Ethanol Reforming for Hydrogen Production in a Hybrid Electric Vehicle﹕Process Optimisation,” J. Power Sources, 105, 26 (2002).
58.Fierro, V., Klouz, O., Akdim, C. and Mirodatos, C., “Oxidative Reforming of Biomass Derived Ethanol for Hydrogen Production in Fuel Cell Applications,” Cataly. Today, 75, 141 (2002).
59.Fierro, V., Akdim, O. and Mirodatos, C., “On-board Hydrogen Production in a Hybrid Electric Vehicle by Bio-ethanol Oxidative Steam Reforming over Ni and Noble Metal Based Catalysts,” Green Chemistry, 5, 20 (2003).
60.Cavallaro, S., Chiodo, V., Freni, S., Mondello, N. and Frusteri, F., “Performance of Rh/Al2O3 Catalyst in the Steam Reforming of Ethanol: H2 Production for MCFC,” Appl. Catal. A; 249, 119 (2003).
61.Cavallaro, S., Chiodo, V., Vita, A. and Freni, S., “Hydrogen Production by Auto-thermal Reforming of Ethanol on Rh/Al2O3 Catalyst,” J. Power Sources, 123, 10 (2003).
62.Velu, S., Satoh, N., Gopinath, C.S., amd Suzuki, K., “Oxidative Reforming of Bio-ethanol over CuNiZnAl Mixed Oxide Catalysts for Hydrogen Production,” Catal. Lett., 82, 145 (2002).
63.Ioannides, T., “Thermodynamic Analysis of Ethanol Processors for Fuel Cell Applications,” J. Power Sources, 92, 17 (2001).
64.Liguras, D. K., Goundani, K. and VeryKios, X. E., “Production of Hydrogen for Fuel Cells by Catalytic Partial Oxidation of Ethanol over Structured Ru Catalysts, ” Int. J. Hydrogen Energ., 29, 419 (2004).
65.Itoh, N., Kaneko, Y. and Igarashi, A., “Efficient Hydrogen Production via Methanol Steam Reforming by Preventing Back-permeation of Hydrogen in a Palladium Membrane Reactor,” Ind. Eng. Chem. Res., 41, 4702 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top