1.Song, C., “Fuel Processing for Low-Temperature and High- Temperature Fuel Cell. Challenges, and Opportunities for Sustainable Development in the 21st Century,” Catal. Today, 77, 17 (2002).
2.張嘉修, 李國興, 林屏杰, 吳石乙 and 林秋裕, “以環境生物技術生產清潔能源-氫氣,” 化工, 49, 85 (2002).3.Sperling, D. and Cannon, J.S., The Hydrogen Energy Transition, 59, ELSEVIER Inc., Londan, UK (2004).
4.Chenior, P.J., Suruey of Industrial Chemistry, second edition, VCH (1992).
5.Tong, J., Yasuyuki., M., Hiroyuki., S. and Kenji., H., “Experimental Study of Steam Reforming of Methane in a Thin(6μm) Pd-Based Membrane Reactor,” Ind. Eng. Chem. Res., 44, 1454 (2005).
6.Shu, J., Grandjean, B.P.A. and Kaliaguine, S., “Methane Steam Reforming in Asymmetric Pd- and Pd-Ag/porous SS Membrane,” Appl. Catal. A, 119, 305 (1994).
7.Kikuchi, E., Nemoto, Y., Kajiwara, M., Uemiya, S. and Kojima, T., “Steam Reforming of Methane in Membrane Reactor: Comparison of Electroless-Plating and CVD Membranes and Catalyst Packing Modes,” Catal. Today, 56, 75 (2000).
8.Uemiya, S., “Brief Review of Steam Reforming Using a Metal Membrane Reactor,” Top. Catal., 29, 1 (2004).
9.Uemiya, S., Sato, N., Ando, H. and Kikuchi, E., “The Water Gas Shift Reaction Assisted by a Palladium Membrane,” Ind. Eng. Chem. Res., 30, 585 (1991).
10.Basile, A. and Paturzo, L., “An Experimental Study of Multilayered Composite Palladium Membrane Reactor for Partial Oxidation of Methane to Syngas,” Catal. Today, 67, 55 (2001).
11.Kragl, U., “Basic Principles of Membrane Technology,” Angewandte Chemie-International Edition in English, 36, 2129 (1997).
12.“IUPAC Manual of Symbols and Technology, Appendix 2, Part 1, Colloid and Surface Chemistry,” Pure Appl. Chem., 31, 578 (1972).
13.Aasberg-Petersen, K., Nielsen, C.S. and J¢rgensen, S.L., “Membrane Reforming for Hydrogen,” Catal. Today, 46, 193 (1998).
14.Uemiya, S., Sato, N., Ando, H., Kude, Y., Matsuda, T. and Kikuchi, E., “Separation of Hydrogen Through Palladium Thin Film Supported on a Porous Glass Tube,” J. Membr. Sci., 56, 303 (1991).
15.Shu, J., Grandjean, B.P.A., Ghali, E. and Kaliaguine, S., “Simultaneous Deposition of Pd and Ag on Porous Stainless Steel by Electroless Plating,” J. Membr. Sci., 77, 181 (1993).
16.Huang, T.-C., Wei, M.-C. and Chen, H.-I., “Permeation of Hydrogen Through Palladium/Alumina Composition Membranes,” Sep. Sci. Technol., 36, 199 (2001).
17.Athayde, A.L., Baker, R.W. and Nguyen, P., “Metal Composite Membranes for Hydrogen Separation,” J. Membr. Sci., 94, 299 (1994).
18.Grashoff, G.J., Pilkington, C.E. and Corti, C.W., “A Review of the Technology Emphasing,the Current Status of Palladium Membrane Diffusion,” Plat. Met. Rev, 27, 157 (1983).
19.Holleck, G.L., “Diffusion and Solubility of Hydrogen in Palladium and Palladium-Silver Alloys,” J. Phys. Chem., 74, 503 (1970).
20.Knapton, A.G., “Palladium Alloys for Hydrogen Diffusion Membranes,” Plat. Met. Rev., 21, 44 (1977).
21.Tsapatsis, M. and Gavalas, G.R., “A Kinetic Model of Membrane Formation by CVD of SiO2 and Al2O3,” AIChE J., 38, 847 (1992).
22.Uemiya, S., Matsuda, T. and Kikuchi, E., “Hydrogen Permeable Palladium- Silver Alloy Membrane Supported on Porous Ceramics,” J. Membr. Sci., 56, 315 (1991).
23.Shu, J., Grandjean, B.P.A., Neste, A.V. and Kaliaguine, S., “Catalytic Palladium-based Membrane Reactors:A Review,” Can. J. Chem. Eng., 69, 1036 (1991).
24.Lewis, F.A., “Solubility of Hydrogen in Metals,” Pure Appl. Chem., 62, 2091 (1990).
25.Hsieh, H.P., “Inorganic Membrane Reactors-A Review,” AIChE Symp. Ser., 268, 53 (1989).
26.Brodowsky, H., “On the Non-Ideal Solution Behavior of Hydrogen in Metal,” Ber. Bunsenges. Physik. Chem., 76, 740 (1972).
27.Armor, J.N., “Applications of Catalytic Inorganic Membrane Reactors to Refinery Products,” J. Membr. Sci., 147, 217 (1998).
28.Xomeritakis, G. and Lin, Y.S., “CVD Synthesis and Gas Permeation Properties of Thin Palladiurn/Alurnina Membranes,” AIChE J., 44, 174 (1998).
29.Xomeritakis, G. and Lin, Y.S., “Fabrication of Thin Metallic Membranes by MOCVD and Sputtering,” J. Membr. Sci., 133, 217 (1997).
30.Yan, S., Maeda, H., Kusakabe, K. and Morooka, S., “Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation,” Ind. Eng. Chem. Res., 33, 616 (1994).
31.Thomann, A.-L., Rozenbaum, J.P., Brault, P., Andreazza-Vignolle, C. and Andreazza, P., “Pd Nanoclusters Grown by Plasma Sputtering Deposition on Amorphous Substrates,” Appl. Surf. Sci., 158, 172 (2000).
32.Jayaraman, V. and Lin, Y.S., “Synthesis and Hydrogen Permeation Properties of Ultrathin Palladium-Silver Alloy Membranes,” J. Membr. Sci., 104, 251 (1995).
33.Bryden, K.J. and Ying, J.Y., “Nanostructured Palladium Membrane Synthesis by Magnetron Sputtering,” Mater. Sci. Eng. A, 204, 140 (1995).
34.Bryden, K.J. and Ying, J.Y., “Electrodeposition Synthesis and Hydrogen Absorption Properties of Nanostructured Palladium-Iron Alloys,” Nanostruct. Mater., 9, 485 (1997).
35.Li, Z.Y., Maeda, H., Kusakabe, K., Morooka, S., Anzaib, H. and Akiyamab, S., “Preparation of Palladium-Silver Alloy Membranes for Hydrogen Separation by the Spray Pyrolysis Method,” J. Membr. Sci., 78, 247 (1993).
36.Nam, S.-E. and Lee, K.-H., “A Study on the Palladium/Nickel Composite Membrane by Vacuum Electrodeposition,” J. Membr. Sci., 170, 91 (2000).
37.Nam, S.-E. and Lee, K.-H., “Hydrogen Separation by Pd Alloy Composite Membranes:Introduction of Diffusion Barrier,” J. Membr. Sci., 192, 177 (2001).
38.Tanaka, D.A.P., Tanco, M.A.L., Niwa, S.-i., Wakui, Y., Mizukami, F., Namba, T. and Suzuki, T.M., “Preparation of Palladium and Silver Alloy Membrane on a Porous-Alumina Tube via Simultaneous Electroless Plating,” J. Membr. Sci., 247, 21 (2005).
39.Yamakawa, K., Ege, M., Ludescher, B. and Hirscher, M., “Surface Adsorbed Atoms Suppressing Hydrogen Permeation of Pd Membranes,” J. Alloy. Compd., 352, 57 (2003).
40.Keuler, J.N., Lorenzen, L. and Miachon, S., “Preparing and Testing Pd Film of Thickness 1-2 Micrometer with High Selectivity and High Hydrogen Permeance,” Sep. Sci. Technol., 37, 379 (2002).
41.Chu, C.Y., “Study on Preparation,Characterization and Hydrogen/Nitrogen Permselectivity of Pd and PdAg Composite Membranes,” Ph.D. Thesis, National Cheng Kung University, Tannan, Taiwan, R.O.C. (2004)
42.Yeung, K.L. and Varma, A., “Materials, Interfaces and Electrochemical Phenomena Novel Preparation Techniques for Thin Metal-ceramic Composite Membranes,” AIChE J., 41, 2131 (1995).
43.Shu, J., Adnot, A., Grandjean, B.P.A. and Kaliaguine, S., “Structurally Stable Composite Pd-Ag Alloy Membranes:Introduction of a Diffusion Barrier,” Thin Solid Films, 286, 72 (1996).
44.Cheng, Y.S. and Yeung, K.L., “Effects of Electroless Plating Chemistry on The Synthesis of Palladium Membranes,” J. Membr. Sci., 182, 195 (2001).
45.Gallucci, F., Paturzo, L., Fama, A. and Basile, A., “Experimental Study of Steam Reforming of Methane in a Dense Pd/Ag Membrane Reactor,” Ind. Eng. Chem. Res., 43, 928 (2004).
46.Tong, J., Su, L., Kashima, Y., Shirai, R., Suda, H. and Matsumura, Y., “Simultaneously Depositing Pd-Ag Thin Membrane on Asymmetric Porous Stainless Steel Tube and Application to Produce Hydrogen from Steam Reforming of Methane,” Ind. Eng. Chem. Res., 45, 648 (2006).
47.Lin, Y.M., Lee, G.L. and Rei, M.H., “An Integrated Purification and Hydrogen with a Palladium Membrane-Catalytic Reactor,” Catal. Today, 44, 343 (1998).
48.Tong, J. and Yasuyuki., M., “Effect of Catalytic Acativity on Methane Steam Reforming in Hydrogen-Permeable Membrane Reactor,” Appl. Catal. A, 286, 226 (2005).
49.Madia, G.S., Barbueri, G. and Drioli, E., “Theoretical and Experimental Analysis of Methane Steam Reforming in a Methane Reactor,” Can. J. Chem. Eng., 77 (1999).
50.Xue, E., O''Keeffe, M. and Ross, J.R.H., “Water-gas Shift Conversion Using a Feed with a Low Steam to Carbon Monoxide Ratio and Containing Sulphur,” Catal. Today, 30, 107 (1996).
51.Lin, Y.M., Liu, S.L., Chuang, C.H. and Chu, Y.T., “Effect of Incipient Removal of Hydrogen through Palladium Membrane on Conversion of Methane Steam Reforming Experimental and Modeling,” Catal. Today, 82, 127 (2003).
52.Worsham, J.E., Wilkinson, M.K. and Shullt, C.G., “Neutron-Diffraction observations on the Palladium-Hydrogen and Palladium-Deuterium Systems,” J. Phys. Chem. Solids, 3, 303 (1957).
53.Yamakawa, K., Ege, M., Ludescher, B., Hirscher, M. and Kronmu¨ller, H., “Hydrogen Permeability Measurement Through Pd, Ni and Fe Membranes,” J. Alloy. Compd., 321, 17 (2001).
54.Itoh, N., Kaneko, Y. and Igarashi, A., “Efficient Hydrogen Production via Methanal Steam Reforming by Preventing Back-Permeation of Hydrogen in a Palladium Membrane Reactor,” Ind. Eng. Chem. Res., 41, 4702 (2002).
55.Ilias, S., Su, N., Udo-Aka, U.I. and King, F.G., “Application of Electroless Deposited Thin-Film Palladium Composite Membrane in Hydrogen Separation,” Sep. Sci. Technol., 32, 487 (1997).
56.Mardilovich, P.P., She, Y., Ma, Y.H. and Rei, M.-H., “Defect-Free Palladium Membranes on Porous Stainless-Steel Support,” AIChE J., 44, 310 (1998).
57.Xomeritakis, G. and Lin, Y.S., “Fabrication of a Thin Palladium Membrane Supported in a Porous Ceramic Substrate by Chemical Vapor Deposition,” J. Membr. Sci., 120, 261 (1996).
58.Roa, F. and Way, J.D., “Influence of Alloy Composition and Membrane Fabrication on the Pressure Dependence of the Hydrogen Flux of Palladium-copper Membranes,” Ind. Eng. Chem. Res., 42, 5827 (2003).
59.Dittmeyer, R., Hollein, V. and Daub, K., “Membrane Reactors for Hydrogenation and Dehydrogenation Processes Based on Supported Palladium,” J. Mol. Catal. A, 173, 135 (2001).
60.Li, A.W., Liang, W.Q. and Hughes, R., “Characterisation and Permeation of Palladium/Stainless Steel Composite Membranes,” J. Membr. Sci., 149, 259 (1998).
61.Uemiya, S., Sato, N., Ando, H., Matsuda, T. and Kikuchi, E., “Steam Reforming of Methane in a Hydrogen-Permeable Membrane Reactor,” Appl. Catal., 67, 223 (1991).
62.Oklay, J.S., Hou, K. and Hughes, R., “A Simulative Comparison of Dense and Microporous Membrane Reactors for the Steam Reforming of Methane,” Appl. Catal. A, 170, 13 (1998).
63.Gallucci, F., Paturzo, L. and Basile, A., “A Simulation Study of The Steam Reforming of Methane in a Dense Tubular Membrane Reactor,” Int. J. Hydrog. Energy, 29, 611 (2004).
64.Ito, M., Tagawa, T. and Goto, S., “Suppression of Carbonaceous Depositions on Nickel Catalyst for the Carbon Dioxide Reforming of Methane,” Appl. Catal. A, 177, 15 (1999).
65.Kock, A.J.H.M., Bokx, P.K.d., Boellaard, E., Klop, W. and Geus, J.W., “The Formation of Filamentous Carbon on Iron and Nickel Catalysts : II. Mechanism,” J. Catal., 96, 468 (1985).
66.Zhang, Z.L. and Verykios, X.E., “Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Ni Catalysts,” Catal. Today, 21, 589 (1994).
67.Rostrup-Nielsen, J.R., Sehested, J. and Nørskov, J.K., “Hydrogen and Synthesis Gas by Steam- and C02 Reforming,” Adv. Catal., 47, 65 (2002).
68.Kleinert, A., Grubert, G., Pan, X., Hamel, C., Seidel-Morgenstern, A. and Caro, J., “Compatibility of Hydrogen Transfer via Pd-membranes with the Rates of Heterogeneously Catalysed Steam Reforming,” Catal. Today, 104, 267 (2005).
69.Smith, J.M., Ness, H.C.V. and Abbott, M.M., Introduction to Chemical Engineering Thermodynamics, sixth edition, p.473, McGraw-Hill, New York, U.S.A. (2001).