跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉筱均
研究生(外文):Hsiao-chun Yeh
論文名稱:鈀銀合金膜反應器進行甲烷水蒸氣重組之研究
論文名稱(外文):Experimental Study of Steam Reforming of Methane in a Palladium-Silver Alloy Membrane Reactor
指導教授:張新福張新福引用關係
指導教授(外文):Shin-fu Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:101
中文關鍵詞:氫氣移出率鎳觸媒膜反應器甲烷水蒸氣重組
外文關鍵詞:methane steam reformingmembrane reactorNi
相關次數:
  • 被引用被引用:1
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用傳統反應器以及膜反應器進行甲烷水蒸氣重組實驗。膜反應器係以內外套管構成,外管為不鏽鋼管,內管為多孔性不鏽鋼管,並以無電鍍法析鍍25μm之緻密鈀銀合金膜,作為分離氫氣之用,內外管間填充商業鎳觸媒進行反應;傳統反應器則是將作為內管之膜管以相同直徑的無孔洞不鏽鋼管取代。實驗結果在不同的實驗參數下(如溫度、壓力、WHSV以及水與甲烷的莫耳數比),詳細的探討甲烷轉化率以及氫氣移出率;此外,就甲烷轉化率方面,比較膜反應器以及傳統反應器。具有高氫產率、高甲烷轉化率,以及相對低的一氧化碳產率的最佳化條件出現在H2O/CH4之莫耳數比為2、溫度為470℃、壓力在7大氣壓以及WHSV在0.3的環境下。
In this study, steam reforming of methane was carried out in a traditional reactor or a membrane reactor. The membrane reactor was consisted of two coaxial tubes, of which the outer tube was a stainless steel tube and the inner one was a porous stainless steel tube, electrolessly plated, with palladium/silver alloy, being dense and important for separation and purification of hydrogen. To perform the reforming reaction, a commercial Ni/MgAl2O3 reforming catalyst was packed into the annular space. The traditional reactor was made by replacing the porous inner tube with a dense stainless steel tube of the same diameter. Methane conversion and hydrogen extraction ratio were studied in detail under different operating conditions with ranging parameters such as temperature, pressure, space velocity and steam-to-methane feed ratio. Moreover, experimental results in terms of methane conversion for the membrane reactor were compared with those obtained using a traditional reactor. For high hydrogen production, high methane conversion and relatively low carbon monoxide yield, the optimum conditions are: steam to methane ratio of 2 , temperature of 470℃, pressure at 7atm and space velocity of 0.3h-1.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VIII
表目錄 XI
壹、前言 1
貳、原理 4
2.1 薄膜反應器的應用 4
2.2 薄膜分類 4
2.3 無機薄膜 5
2.3.1 無機薄膜分離機制 5
2.3.2 無機薄膜構造 7
2.3.3 無機薄膜分離程序 8
2.4 鈀金屬特性 9
2.4.1 鈀合金膜氣體滲透行為 10
2.4.1-1 氣體於孔洞基材的傳送機制 10
2.4.1-2 氫氣於緻密鈀膜的傳送機制 12
2.4.2 鈀金屬的氫脆現象 14
2.4.3 氫氣在鈀及鈀銀合金膜的擴散與溶解 17
2.5 鈀合金薄膜製備方法 19
2.5.1 化學氣相沈積法(chemical vapor deposition,CVD) 20
2.5.2 濺鍍法(sputtering) 20
2.5.3 噴霧裂解法(spray pyrolysis) 21
2.5.4 電鍍法(electroplating) 23
2.5.5 無電鍍法(electroless plating) 24
2.6 影響鈀合金膜活性之因素 29
2.7 膜反應器的類型 29
2.8 鈀銀合金膜管之滲透分析 31
2.9 降低氫氣逆滲透(back-permeation)之方法 32
參、實驗方法 34
3.1 實驗藥品、管材及氣體 34
3.2 儀器 36
3.2.1 分析儀器 36
3.2.2 其他儀器 36
3.3 實驗步驟: 38
3.3.1 鈀銀合金膜管之滲透分析(H2/N2) 38
3.3.2 甲烷水蒸氣重組反應 42
3.3.2-1 鈀銀合金膜反應器進行甲烷水蒸氣重組實驗 42
3.3.2-2 傳統反應器進行甲烷水蒸氣重組實驗 44
3.3.2-3 鈀銀合金膜反應之空白實驗 44
3.3.3 甲烷水蒸氣重組反應產物分析 44
肆、結果與討論 47
4.1 氫氣滲透行為 47
4.1.1 氫氣在鈀膜中的透過行為 47
4.1.2 選擇率及活化能 48
4.2 利用鈀銀合金膜反應器進行甲烷水蒸氣重組實驗 51
4.2.1 操作參數對甲烷轉化率的影響 51
4.2.1-1 操作溫度的影響: 51
4.2.1-2 反應壓力的影響 54
4.2.1-3 WHSV(weight hourly space velocity) 的影響 57
4.2.1-4 水與甲烷莫耳比 (nH2O/nCH4) 的影響 59
4.2.1-5 操作參數與甲烷轉化率之比較 60
4.2.2 氫氣移出率 62
4.2.3 CO產率的比較 66
4.3 積碳的形成 67
伍、結論 74
陸、建議 76
柒、附錄 77
7.1 甲烷水蒸氣重組可能出現的反應方程式 77
7.2 實驗數據定義 78
7.3 計算理論平衡轉化率 79
捌、參考文獻 84
1.Song, C., “Fuel Processing for Low-Temperature and High- Temperature Fuel Cell. Challenges, and Opportunities for Sustainable Development in the 21st Century,” Catal. Today, 77, 17 (2002).
2.張嘉修, 李國興, 林屏杰, 吳石乙 and 林秋裕, “以環境生物技術生產清潔能源-氫氣,” 化工, 49, 85 (2002).
3.Sperling, D. and Cannon, J.S., The Hydrogen Energy Transition, 59, ELSEVIER Inc., Londan, UK (2004).
4.Chenior, P.J., Suruey of Industrial Chemistry, second edition, VCH (1992).
5.Tong, J., Yasuyuki., M., Hiroyuki., S. and Kenji., H., “Experimental Study of Steam Reforming of Methane in a Thin(6μm) Pd-Based Membrane Reactor,” Ind. Eng. Chem. Res., 44, 1454 (2005).
6.Shu, J., Grandjean, B.P.A. and Kaliaguine, S., “Methane Steam Reforming in Asymmetric Pd- and Pd-Ag/porous SS Membrane,” Appl. Catal. A, 119, 305 (1994).
7.Kikuchi, E., Nemoto, Y., Kajiwara, M., Uemiya, S. and Kojima, T., “Steam Reforming of Methane in Membrane Reactor: Comparison of Electroless-Plating and CVD Membranes and Catalyst Packing Modes,” Catal. Today, 56, 75 (2000).
8.Uemiya, S., “Brief Review of Steam Reforming Using a Metal Membrane Reactor,” Top. Catal., 29, 1 (2004).
9.Uemiya, S., Sato, N., Ando, H. and Kikuchi, E., “The Water Gas Shift Reaction Assisted by a Palladium Membrane,” Ind. Eng. Chem. Res., 30, 585 (1991).
10.Basile, A. and Paturzo, L., “An Experimental Study of Multilayered Composite Palladium Membrane Reactor for Partial Oxidation of Methane to Syngas,” Catal. Today, 67, 55 (2001).
11.Kragl, U., “Basic Principles of Membrane Technology,” Angewandte Chemie-International Edition in English, 36, 2129 (1997).
12.“IUPAC Manual of Symbols and Technology, Appendix 2, Part 1, Colloid and Surface Chemistry,” Pure Appl. Chem., 31, 578 (1972).
13.Aasberg-Petersen, K., Nielsen, C.S. and J¢rgensen, S.L., “Membrane Reforming for Hydrogen,” Catal. Today, 46, 193 (1998).
14.Uemiya, S., Sato, N., Ando, H., Kude, Y., Matsuda, T. and Kikuchi, E., “Separation of Hydrogen Through Palladium Thin Film Supported on a Porous Glass Tube,” J. Membr. Sci., 56, 303 (1991).
15.Shu, J., Grandjean, B.P.A., Ghali, E. and Kaliaguine, S., “Simultaneous Deposition of Pd and Ag on Porous Stainless Steel by Electroless Plating,” J. Membr. Sci., 77, 181 (1993).
16.Huang, T.-C., Wei, M.-C. and Chen, H.-I., “Permeation of Hydrogen Through Palladium/Alumina Composition Membranes,” Sep. Sci. Technol., 36, 199 (2001).
17.Athayde, A.L., Baker, R.W. and Nguyen, P., “Metal Composite Membranes for Hydrogen Separation,” J. Membr. Sci., 94, 299 (1994).
18.Grashoff, G.J., Pilkington, C.E. and Corti, C.W., “A Review of the Technology Emphasing,the Current Status of Palladium Membrane Diffusion,” Plat. Met. Rev, 27, 157 (1983).
19.Holleck, G.L., “Diffusion and Solubility of Hydrogen in Palladium and Palladium-Silver Alloys,” J. Phys. Chem., 74, 503 (1970).
20.Knapton, A.G., “Palladium Alloys for Hydrogen Diffusion Membranes,” Plat. Met. Rev., 21, 44 (1977).
21.Tsapatsis, M. and Gavalas, G.R., “A Kinetic Model of Membrane Formation by CVD of SiO2 and Al2O3,” AIChE J., 38, 847 (1992).
22.Uemiya, S., Matsuda, T. and Kikuchi, E., “Hydrogen Permeable Palladium- Silver Alloy Membrane Supported on Porous Ceramics,” J. Membr. Sci., 56, 315 (1991).
23.Shu, J., Grandjean, B.P.A., Neste, A.V. and Kaliaguine, S., “Catalytic Palladium-based Membrane Reactors:A Review,” Can. J. Chem. Eng., 69, 1036 (1991).
24.Lewis, F.A., “Solubility of Hydrogen in Metals,” Pure Appl. Chem., 62, 2091 (1990).
25.Hsieh, H.P., “Inorganic Membrane Reactors-A Review,” AIChE Symp. Ser., 268, 53 (1989).
26.Brodowsky, H., “On the Non-Ideal Solution Behavior of Hydrogen in Metal,” Ber. Bunsenges. Physik. Chem., 76, 740 (1972).

27.Armor, J.N., “Applications of Catalytic Inorganic Membrane Reactors to Refinery Products,” J. Membr. Sci., 147, 217 (1998).
28.Xomeritakis, G. and Lin, Y.S., “CVD Synthesis and Gas Permeation Properties of Thin Palladiurn/Alurnina Membranes,” AIChE J., 44, 174 (1998).
29.Xomeritakis, G. and Lin, Y.S., “Fabrication of Thin Metallic Membranes by MOCVD and Sputtering,” J. Membr. Sci., 133, 217 (1997).
30.Yan, S., Maeda, H., Kusakabe, K. and Morooka, S., “Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation,” Ind. Eng. Chem. Res., 33, 616 (1994).
31.Thomann, A.-L., Rozenbaum, J.P., Brault, P., Andreazza-Vignolle, C. and Andreazza, P., “Pd Nanoclusters Grown by Plasma Sputtering Deposition on Amorphous Substrates,” Appl. Surf. Sci., 158, 172 (2000).
32.Jayaraman, V. and Lin, Y.S., “Synthesis and Hydrogen Permeation Properties of Ultrathin Palladium-Silver Alloy Membranes,” J. Membr. Sci., 104, 251 (1995).
33.Bryden, K.J. and Ying, J.Y., “Nanostructured Palladium Membrane Synthesis by Magnetron Sputtering,” Mater. Sci. Eng. A, 204, 140 (1995).
34.Bryden, K.J. and Ying, J.Y., “Electrodeposition Synthesis and Hydrogen Absorption Properties of Nanostructured Palladium-Iron Alloys,” Nanostruct. Mater., 9, 485 (1997).
35.Li, Z.Y., Maeda, H., Kusakabe, K., Morooka, S., Anzaib, H. and Akiyamab, S., “Preparation of Palladium-Silver Alloy Membranes for Hydrogen Separation by the Spray Pyrolysis Method,” J. Membr. Sci., 78, 247 (1993).
36.Nam, S.-E. and Lee, K.-H., “A Study on the Palladium/Nickel Composite Membrane by Vacuum Electrodeposition,” J. Membr. Sci., 170, 91 (2000).
37.Nam, S.-E. and Lee, K.-H., “Hydrogen Separation by Pd Alloy Composite Membranes:Introduction of Diffusion Barrier,” J. Membr. Sci., 192, 177 (2001).
38.Tanaka, D.A.P., Tanco, M.A.L., Niwa, S.-i., Wakui, Y., Mizukami, F., Namba, T. and Suzuki, T.M., “Preparation of Palladium and Silver Alloy Membrane on a Porous-Alumina Tube via Simultaneous Electroless Plating,” J. Membr. Sci., 247, 21 (2005).
39.Yamakawa, K., Ege, M., Ludescher, B. and Hirscher, M., “Surface Adsorbed Atoms Suppressing Hydrogen Permeation of Pd Membranes,” J. Alloy. Compd., 352, 57 (2003).
40.Keuler, J.N., Lorenzen, L. and Miachon, S., “Preparing and Testing Pd Film of Thickness 1-2 Micrometer with High Selectivity and High Hydrogen Permeance,” Sep. Sci. Technol., 37, 379 (2002).
41.Chu, C.Y., “Study on Preparation,Characterization and Hydrogen/Nitrogen Permselectivity of Pd and PdAg Composite Membranes,” Ph.D. Thesis, National Cheng Kung University, Tannan, Taiwan, R.O.C. (2004)
42.Yeung, K.L. and Varma, A., “Materials, Interfaces and Electrochemical Phenomena Novel Preparation Techniques for Thin Metal-ceramic Composite Membranes,” AIChE J., 41, 2131 (1995).
43.Shu, J., Adnot, A., Grandjean, B.P.A. and Kaliaguine, S., “Structurally Stable Composite Pd-Ag Alloy Membranes:Introduction of a Diffusion Barrier,” Thin Solid Films, 286, 72 (1996).
44.Cheng, Y.S. and Yeung, K.L., “Effects of Electroless Plating Chemistry on The Synthesis of Palladium Membranes,” J. Membr. Sci., 182, 195 (2001).
45.Gallucci, F., Paturzo, L., Fama, A. and Basile, A., “Experimental Study of Steam Reforming of Methane in a Dense Pd/Ag Membrane Reactor,” Ind. Eng. Chem. Res., 43, 928 (2004).
46.Tong, J., Su, L., Kashima, Y., Shirai, R., Suda, H. and Matsumura, Y., “Simultaneously Depositing Pd-Ag Thin Membrane on Asymmetric Porous Stainless Steel Tube and Application to Produce Hydrogen from Steam Reforming of Methane,” Ind. Eng. Chem. Res., 45, 648 (2006).
47.Lin, Y.M., Lee, G.L. and Rei, M.H., “An Integrated Purification and Hydrogen with a Palladium Membrane-Catalytic Reactor,” Catal. Today, 44, 343 (1998).
48.Tong, J. and Yasuyuki., M., “Effect of Catalytic Acativity on Methane Steam Reforming in Hydrogen-Permeable Membrane Reactor,” Appl. Catal. A, 286, 226 (2005).
49.Madia, G.S., Barbueri, G. and Drioli, E., “Theoretical and Experimental Analysis of Methane Steam Reforming in a Methane Reactor,” Can. J. Chem. Eng., 77 (1999).

50.Xue, E., O''Keeffe, M. and Ross, J.R.H., “Water-gas Shift Conversion Using a Feed with a Low Steam to Carbon Monoxide Ratio and Containing Sulphur,” Catal. Today, 30, 107 (1996).
51.Lin, Y.M., Liu, S.L., Chuang, C.H. and Chu, Y.T., “Effect of Incipient Removal of Hydrogen through Palladium Membrane on Conversion of Methane Steam Reforming Experimental and Modeling,” Catal. Today, 82, 127 (2003).
52.Worsham, J.E., Wilkinson, M.K. and Shullt, C.G., “Neutron-Diffraction observations on the Palladium-Hydrogen and Palladium-Deuterium Systems,” J. Phys. Chem. Solids, 3, 303 (1957).
53.Yamakawa, K., Ege, M., Ludescher, B., Hirscher, M. and Kronmu¨ller, H., “Hydrogen Permeability Measurement Through Pd, Ni and Fe Membranes,” J. Alloy. Compd., 321, 17 (2001).
54.Itoh, N., Kaneko, Y. and Igarashi, A., “Efficient Hydrogen Production via Methanal Steam Reforming by Preventing Back-Permeation of Hydrogen in a Palladium Membrane Reactor,” Ind. Eng. Chem. Res., 41, 4702 (2002).
55.Ilias, S., Su, N., Udo-Aka, U.I. and King, F.G., “Application of Electroless Deposited Thin-Film Palladium Composite Membrane in Hydrogen Separation,” Sep. Sci. Technol., 32, 487 (1997).
56.Mardilovich, P.P., She, Y., Ma, Y.H. and Rei, M.-H., “Defect-Free Palladium Membranes on Porous Stainless-Steel Support,” AIChE J., 44, 310 (1998).
57.Xomeritakis, G. and Lin, Y.S., “Fabrication of a Thin Palladium Membrane Supported in a Porous Ceramic Substrate by Chemical Vapor Deposition,” J. Membr. Sci., 120, 261 (1996).
58.Roa, F. and Way, J.D., “Influence of Alloy Composition and Membrane Fabrication on the Pressure Dependence of the Hydrogen Flux of Palladium-copper Membranes,” Ind. Eng. Chem. Res., 42, 5827 (2003).
59.Dittmeyer, R., Hollein, V. and Daub, K., “Membrane Reactors for Hydrogenation and Dehydrogenation Processes Based on Supported Palladium,” J. Mol. Catal. A, 173, 135 (2001).
60.Li, A.W., Liang, W.Q. and Hughes, R., “Characterisation and Permeation of Palladium/Stainless Steel Composite Membranes,” J. Membr. Sci., 149, 259 (1998).

61.Uemiya, S., Sato, N., Ando, H., Matsuda, T. and Kikuchi, E., “Steam Reforming of Methane in a Hydrogen-Permeable Membrane Reactor,” Appl. Catal., 67, 223 (1991).
62.Oklay, J.S., Hou, K. and Hughes, R., “A Simulative Comparison of Dense and Microporous Membrane Reactors for the Steam Reforming of Methane,” Appl. Catal. A, 170, 13 (1998).
63.Gallucci, F., Paturzo, L. and Basile, A., “A Simulation Study of The Steam Reforming of Methane in a Dense Tubular Membrane Reactor,” Int. J. Hydrog. Energy, 29, 611 (2004).
64.Ito, M., Tagawa, T. and Goto, S., “Suppression of Carbonaceous Depositions on Nickel Catalyst for the Carbon Dioxide Reforming of Methane,” Appl. Catal. A, 177, 15 (1999).
65.Kock, A.J.H.M., Bokx, P.K.d., Boellaard, E., Klop, W. and Geus, J.W., “The Formation of Filamentous Carbon on Iron and Nickel Catalysts : II. Mechanism,” J. Catal., 96, 468 (1985).
66.Zhang, Z.L. and Verykios, X.E., “Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Ni Catalysts,” Catal. Today, 21, 589 (1994).
67.Rostrup-Nielsen, J.R., Sehested, J. and Nørskov, J.K., “Hydrogen and Synthesis Gas by Steam- and C02 Reforming,” Adv. Catal., 47, 65 (2002).
68.Kleinert, A., Grubert, G., Pan, X., Hamel, C., Seidel-Morgenstern, A. and Caro, J., “Compatibility of Hydrogen Transfer via Pd-membranes with the Rates of Heterogeneously Catalysed Steam Reforming,” Catal. Today, 104, 267 (2005).
69.Smith, J.M., Ness, H.C.V. and Abbott, M.M., Introduction to Chemical Engineering Thermodynamics, sixth edition, p.473, McGraw-Hill, New York, U.S.A. (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top