跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 12:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃思維
研究生(外文):Szu-Wei Huang
論文名稱:在微流體碟片中流體控制之研究
論文名稱(外文):The Study of Flow Control in the Microfluidic Disc
指導教授:施志欣
指導教授(外文):Chih-Hsin Shih
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:45
中文關鍵詞:微流體碟片毛細管閥液橋力流體控制
外文關鍵詞:capillary valveflow controlmicrofluidic discliquid bridge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
閥門在微流體中扮演一個相重要的角色,可以進行流體的流動控制,甚至可自動開啟。因為毛細管閥的成本且可保持空氣暢通,為一種普遍被使用的閥。我們的研究發現除了幾何形狀外,微儲槽(micro-chamber)表面的靜摩擦力也會對毛細管閥的效果造成影響。本研究將探討液橋(liquid bridge)於微儲槽中的摩擦力,探討的變因包括表面張力、接觸角、兩平行碟片的距離和液體體積。
Valving is an important function in the microfluidics since it provides the ability to control the fluid flow and eventually leads to automation. Capillary valving is the most popular type of valving since it is low cost and also provides good air venting. In our study of capillary valving, it is found that in addition to the geometry of the valving design, the static friction in the micro-chamber also plays important roles. A series of experiments were carried out to study the effect of friction in the micro-chamber using a “liquid bridge” model. It is found that factors such as surface tension, contact angle, distance between two parallel disks and volume of liquid affect the friction in the micro-chamber.
第一章 緒論 1
1.1 微型綜合分析系統 1
1.2 微流體碟片和毛細管閥 1
1.3 毛細管閥之原理:毛細管壓差 2
1.4 相關研究 5
1.4 研究動機與目的 11
第二章 相關理論 14
2.1 流體於旋轉碟片的運動分析 14
2.2 Young-Laplace方程式(或稱Laplace方程式) 17
2.3 Young方程式 18
2.4 液橋力 20
2.5 遲滯現象與動態接觸角 21
第三章 實驗步驟與儀器 23
3.1 微流體碟片製作 23
3.2 微流體碟片流體觀測系統 26
3.3 實驗參數設計 29
第四章 實驗結果與討論 32
4.1 截面加寬後之情形 32
4.2 靜態接觸角與表面張力之影響 34
4.3 截面高度之影響 36
4.4 液體體積之影響 37
第五章 結論及未來展望 40
5.1 結論 40
5.2 未來展望 40
參考文獻 41
1.Manz, A.; Graber, N.; Widmer, H. M., Miniaturized Total Chemical Analaysis Systems: a Novel Concept for Chemical Sensing. Sensors and Actuators B: Chemical 1990, 1, (1-6), 244-248.
2.Geschke, O.; Klank, H.; Tellemann, P., Microsystem Engineering of Lab-on-a-Chip Devices. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim: 2004.
3.Nguyen, N.-T.; Wereley, S., Fundamentals and Applications of Microfluidics. Artech House: Norwood, MA, USA, 2002.
4.Duffy, D. C.; Gillis, H. L.; Lin, J.; Norman F. Sheppard, J.; Kellogg, G. J., Microfabricated Centrifugal Microfluidic System: Characterization and Multiple Enzymatic Assays. Analytical Chemistry 1999, 71, (20).
5.ZOVAL, J. V.; MADOU, M. J. In Centrifugal-Based Fluidic Platforms, PROCEEDINGS OF THE IEEE, 2004; IEEE: 2004.
6.Marc J. Madou, L. J. L., Sylvia Daunert, Siyi Lai, Chih-Hsin Shih, Design and Fabrication of CD-like Microfluidic Platforms for Diagnostics: Microfluidic Functions. Biomedical Microdevices 2001, 3, (3), 245-254.
7.Myers, D., Surface, interfaces, and colloids: principles and application. Wiley-VCH: New York, N.Y., 1999.
8.Kim, D. S.; Lee, K.-C.; Kwon, T. H.; Lee, S. S., Micro-channel filling flow considering surface tension effect. J. Micromech. Microeng. 2002, 12, 236-246.
9.Man, P. F.; Mastrangelo, C. H.; Burns, M. A.; Burke, D. T. In Microfabricated capillarity-driven stop valve and sample injector, Proc. 1998 IEEE Microsystem Simulation Modeling Conference, (MSM-98), Santa Clara, CA, April 8-10, 1998; IEEE: Santa Clara, CA, 1998; pp 45-50.
10.David C. Duffy, H. L. G., Joe Lin, Norman F. Sheppard, Jr., and Gregory J. Kellogg, Microfabricated Centrifugal Microfluidic System: Characterization and Multiple Enzymatic Assays. Analytical Chemistry 1990, 71, (20).
11.Moroney, R. M.; Amantea, R.; McBride, S. E. In A Passive Fluid Valve Element for a High-density Chemical Synthesis Machine, 2nd International Conference on Modeling and Simulation of Microsystems, 1999; 1999.
12.McNeely, M. R.; Spute, M. K.; Tusneem, N. A.; Oliphant, A. R. In Hydrophobic microfluidics, Proceedings of SPIE – microfluidic devices & systems II 1999; CH, A.; AB, F., Eds. SPIE: 1999; pp 210-220.
13.Zeng, J.; Banerjee, D.; Deshpande, M.; Gilbert, J. R.; Duffy, D. C.; Kellogg, G. J. In DESIGN ANALYSES OF CAPILLARY BURST VALVES IN CENTRIFUGAL MICROFLUIDICS, MicroTAS 2000 Symposium, 2000; 2000.
14.Zeng, J.; Deshpande, M.; Greiner, K. B.; Gilbert, J. R., FLUIDIC CAPACITANCE MODEL OF CAPILLARY-DRIVEN STOP VALVES. 2000.
15.Andersson, H.; Wijngaart, W. v. d.; Griss, P.; Niklaus, F.; Stemme, G., Hydrophobic valves of plasma deposited octafluocyclobutane in DRIE channels. Sensors and Actuators B 2001, 75, 136-141.
16.Puntambekar, A.; Choi, J.-W.; Ahn, C. H.; Kim, S.; Makhijani, V., Fixed-volume metering microdispenser module. Lab on a Chip 2002, 2, 213-218.
17.Puntambekar, A. P. MICROFLUIDIC DISPENSERS BASED ON STRUCTURALLY PROGRAMMABLE MICROFLUIDIC SYSTEM (sPROMs) AND THEIR APPLICATION FOR μTAS. University of Cincinnati, 2003.
18.Melin, J.; Roxhed, N.; Gimenez, G.; Griss, P.; Wijngaart, W. v. d.; Stemme, G. In A LIQUID-TRIGGERED LIQUID MICROVALVE, The 12th International Conference on Solid State Sensors, Actuators and Microsystem, Boston, 2003; IEEE: Boston, 2003; pp 1562-1565.
19.Feng, Y.; Zhou, Z.; Ye, X.; Xiong, J., Passive valves based on hydrophobic microfluidics. Sensors and Actuators A 2003, 108, 138-143.
20.Grumann, M.; Geipel, A.; Riegger, L.; Zengerle, R.; Ducrée, J., Batch-mode mixing on centrifugal microfluidic platforms. Lab on a Chip 2005, 5, 560-565.
21.Haeberle, S.; Brenner, T.; Schlosser, H.-P.; Zengerle, R.; Ducrée, J., Centrifugal Micromixer. Chem. Eng. Technol. 2005, 28, (5), 613-616.
22.Brenner, T.; Glatzel, T.; Zengerle, R.; Ducrée, J., Frequency-dependent transversal flow control in centrifugal microfluidics. Lab on a Chip 2005, 5, 146-150.
23.Ducrée, J.; Haeberle, S.; Brenner, T.; Glatzel, T.; Zengerle, R., Patterning of flow and mixing in rotating radial microchannels. Microfluidics and Nanofluidics 2005, 2, (2), 97-105.
24.Brenner, T.; Haeberle, S.; Zengerle, R.; Ducrée, J. In CONTINUOUS CENTRIFUGAL SEPARATION OF WHOLE BLOOD ON A DISK, 8th International Conference on Miniaturiyed Systems for Chemistry and LIfe Sciences, Malmö, Sweden, September 26-30, 2004; Malmö, Sweden, 2004; pp 566-568.
25.Leu, T.-S.; Chang, P.-Y., Pressure barrier of capillary stop valves in micro sample separators. Sensors and Actuators A 2004, 115, 508-515.
26.張佩郁. 微流元件內表面張力驅動之流體流動現象的實驗探討. 國立成功大學, 臺南市, 民國九十二年.
27.Wang, G.-J.; Hsu, W.-H.; Chang, Y.-Z.; Yang, H., Centrifugal and Electrical Field Forces Dual-Pumping CD-Like Microfluidic Platform for Biomedical Separation. Biomedical Microdevices 2004, 6, (1), 47-53.
28.張峻豪. 三重推動力新型分離晶片平台. 國立中興大學, 臺中市, 民國九十三年.
29.Cho, H.; Kim, H.-Y.; Kang, J. Y.; Kim, T. S. In Capillary passive valve in microfluidic systems, NSTI-Nanotech 2004, 2004; 2004; pp 263-266.
30.吳兢先. 科氏力在行星式碟片閥門模式與單點流體分離閥門模式之研究. 國立臺北科技大學, 臺北市, 民國九十四年.
31.Ando, Y.; Ino, j., Friction and pull-off forces on submicron-size asperities. Wear 1998, 216, 115-122.
32.Sirghi, L., Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts. APPLIED PHYSICS LETTERS 2003, 82, (21), 3755-3757.
33.Crassous, J.; Charlaix, E.; Gazvallet, H.; Loubet, J.-L., Experimental Study of a Nanometric Liquid Bridge with a Surface Force Apparatus. Langmuir 1993, 9, 1995-1998.
34.Ando, Y. Microtribology. http://staff.aist.go.jp/yas.ando/study_e.html (2006/07/15),
35.金佩傑, 應用力學 : 動力學. 三民: 臺北市, 2005.
36.Ng, C. K. 甚麼是『向心力』? 甚麼是『離心力』?. http://www.ngsir.netfirms.com/PhyQ.htm
37.Ng, C. K. 離心力是向心力的反作用力嗎?. http://www.ngsir.netfirms.com/PhyQ.htm
38.Peter A. Kralchevsky, K. N., Particles at Fluids Interfaces and Membranes: Attachment of Colloid Particles and Proteins to Interfaces and Formation of Two-Dimensional Arrays. Elseier: Amsterdam ; New York, 2001.
39.Lambert, P.; Letier, P.; Delchambre, A. In Capillary and Surface Tension Forces in the Manipulation of Small Parts, Proceedings of 5th IEEE International Symposium on Assembly and Task Planning, Besancon, France, July 10-11, 2003; Besancon, France, 2003; pp 54-59.
40.Lian, G.; Thornton, C.; Adams, M. J., A Theoretical Study of the Liquid Bridge Force Between Two Rigid Spherical Bodies. JOURNAL OF COLLOID AND INTERFACE SCIENCE 1993, 161, 138-147.
41.Pashley, R. M.; Karaman, M. E., Applied colloid and surface chemistry. J. Wiley: Chichester, England, 2004.
42.Schütt, H.; Spetzler, H., Capillary Crack Imbibition: A Theoretical and Experimental Study Using a Hele-Shaw Cell. Pure and Applied Geophysics 2001, 158, 627-646.
43.Gao, L.; McCarthy, T. J., Contact Angle Hysteresis Explained. Langmuir 2006.
44.Quéré, D., Drop at Rest on a Tilted Plane. Langmuir 1998, 14, 2213-2216.
45.Langbein, D., Capillary surfaces: shape - stability - dynamics, in particular under weightlessness. Springer: Bremen, Germany, 2002.
46.黃定加, 新編物理化學實驗. 高立出版: 臺北縣, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top