跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 07:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳靜誼
研究生(外文):Jing-Yi Chen
論文名稱:Sol-Gel法中pH值對TiO2奈米微粒晶型之影響
論文名稱(外文):Effect of pH on the formation of crystalline TiO2 nanoparticles prepared by sol-gel method
指導教授:詹志潔
指導教授(外文):Chih-Chieh Chan
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:103
中文關鍵詞:pH效應非晶型TiO2銳鈦礦金紅石
外文關鍵詞:TiO2amorphouspH effectrutileanatase
相關次數:
  • 被引用被引用:3
  • 點閱點閱:558
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用TiCl4為原料,在室溫下進行水解與縮合反應,藉由實驗中添加不同莫耳數的鹼液來調整溶液的pH值,可合成出不同結晶相之TiO2奈米微粒。實驗中所使用的鹼液分別為弱鹼的氫氧化銨溶液與強鹼的氫氧化鈉溶液。X-ray繞射分析結果顯示,反應溶液在低pH值製備得到的TiO2奈米微粒為金紅石結晶;在較高pH值反應得到的TiO2奈米微粒為銳鈦礦結晶;當反應溶液pH值偏中性或鹼性則不利於TiO2的結晶形成。表面結構分析的結果,在低pH值製備得到的金紅石結晶之TiO2奈米微粒呈類似棒狀的長條型,長約75~90nm,寬約25nm;而在高pH值製備得到的銳鈦礦型與非結晶型態之TiO2則為圓形粒子,大小約5~10nm。以甲基橙溶液在365nm紫外光下照射2小時進行光催化實驗,結果顯示在酸性條件下製備得到金紅石結晶結構之TiO2奈米微粒光催化性能較佳,降解率達90%,與P25的光催化效能相當;而銳鈦礦結晶之TiO2奈米微粒,由於其結晶性不佳或能隙值大,需要較高的能量才能完全激發,所以在365nm的紫外燈下的光催化降解率僅達80%。
Different crystalline phases of TiO2 nanoparticles were obtained from the sol-gel method by using TiCl4 as raw material under different pH conditions. Two kinds of basic solutions, NH4OH and NaOH, respectively, were used to control the pH conditions in the whole study.From X-ray diffraction analysis, it was found that rutile TiO2 nanoparticles could be obtained at low pH. At a little higher pH, anatase structure was observed instead. When the solution was in neutral or basic conditions, only amorphous TiO2 nanoparticles were obtained.The FESEM images showed that rutile TiO2 nanoparticles were rodlike and the particle size was about 75~90nm in length and 25nm in diameter. While anatase and amorphous TiO2nanoparticles were both in spherical shape with the diameter about 5~10nm.The photocatalytic activity of samples was evaluated by methyl orange degradation under UV irradiation (l=365nm). The results showed that rutile TiO2 nanoparticles exhibited excellent photocatalytic performance, about 90% of methyl orange was mineralized within 2 hours. However, anatase TiO2 nanoparticles showed a little less photocatalytic activity, only 80% degradation of methyl orange was observed, probably due to small particle size (quantum size blue-shift effect) and less crystallinity of samples. No photocatalytic activity was observed in amorphous TiO2 nanoparticles.
第一章 緒論-----------------------------------------------1
1-1 前言--------------------------------------------------1
1-2 研究目的----------------------------------------------2
第二章 文獻回顧與原理-------------------------------------4
2-1 奈米材料----------------------------------------------4
2-1-1奈米材料的定義-----------------------------------4
2-1-2奈米材料的特性-----------------------------------5
2-2 二氧化鈦粒子的製備與應用-----------------------------10
2-2-1二氧化鈦簡介------------------------------------10
2-2-2二氧化鈦的製備----------------------------------14
2-2-3二氧化鈦的應用----------------------------------18
2-3 製備二氧化鈦結晶粒子之文獻回顧-----------------------23
2-4 分離電荷理論-----------------------------------------27
2-5 水解反應和縮合反應-----------------------------------29
2-6 二氧化鈦光催化原理-----------------------------------34
第三章 實驗方法與步驟------------------------------------38
3-1 藥品-------------------------------------------------38
3-2 實驗設備與分析儀器-----------------------------------39
3-3 實驗步驟---------------------------------------------40
3-4 物理特性分析-----------------------------------------42
3-5 二氧化鈦光催化活性評估-------------------------------47
第四章 結果與討論----------------------------------------50
4-1 添加弱鹼氫氧化銨為催化劑製備TiO2奈米微粒-------------50
4-1-1pH值對反應液外觀的影響--------------------------50
4-1-2晶相分析----------------------------------------53
4-1-3表面結構分析------------------------------------61
4-1-4高解析比表面積分析------------------------------63
4-1-5UV-Vis分析--------------------------------------65
4-1-6光催化活性評估----------------------------------68
4-2 添加強鹼氫氧化鈉為催化劑製備TiO2奈米微粒-------------73
4-2-1 pH值對反應液外觀的影響-------------------------73
4-2-2晶相分析----------------------------------------75
4-2-3表面結構分析------------------------------------83
4-2-4高解析比表面積分析------------------------------85
4-2-5UV-Vis分析--------------------------------------86
4-2-6光催化活性評估----------------------------------89
第五章 結論與展望----------------------------------------93
5-1 結論-------------------------------------------------93
5-2 展望-------------------------------------------------96
參考文獻-------------------------------------------------97
【1】I. Safarik, M. Safarikova, Monatsh., Magnetic
Nanoparticles and Biosciences, Monatsh Chem., 133,
737-759 (2002)
【2】W. Barthlott, C. Neinhuis, Planta, Purity of the
sacred lotus, or escape from contamination in
biological surfaces, 202, 1-8 (1997)
【3】呂宗昕 著,奈米科技與光觸媒,商周出版,2004年六月
【4】http://www.nano.fcu.edu.tw/nm.magicworld.html
【5】馬振基 主編,奈米材料科技原理與應用,全華科技圖書股份
有限公司,中華民國九十三年三月
【6】劉吉平,郝向陽 編著,奈米科學與技術,世茂出版社,2003
年12月
【7】張立德、牟季美 著,奈米材料和奈米結構,滄海書局,中華
民國九十一年六月
【8】羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民 編著,
奈米科技導論,全華科技圖書股份有限公司,中華民國九十二
年十一月
【9】L. Spanhel, M. Haase, H. Weller and A. Henglein,
Photochemistry of Colloidal Semiconductors. 20.
Surface Modification and Stability of Strong
Luminescing CdS Particles, J. Am. Chem. Soc.,
109, 5649-5655(1987)
【10】B. Liu, T. Torimoto, H. Matsumoto and H. Yoneyama,
Effect of solvent on photocatalytic reduction of
carbon dioxide using TiO2 nanocrystal photocatalyst
embedded in SiO2 matrices, J. Photochem. Photobiol.
A, 108, 187-192(1997)
【11】J. A. Navio, G. Colvn, J. M. Herman, Photoconductive
and photocatalytic properties of ZrTiO4. Comparison
with the parent oxides TiO2 and ZrO2, J. Photochem.
Photobiol. A, 108, 197-185(1997)
【12】A. J. Hoffman, E. R. Carraway, M. R. Hoffmann,
Photocatalytic Production of H2O2 and Organic
Peroxides on Quantum-Sized Semiconductor Collolds,
Environ. Sci. Technol., 28, 776-785(1994)
【13】D. F. Ollis, E. Pelizzetti, Photocatalyzed
destruction of water contaminants, Environ. Sci.
Technol., 25, 1522-1529(1991)
【14】D. W. Hwang, J. Kim, T. J. Park and J. S. Lee, Mg-
doped WO3 as a novel photocatalyst for visible light-
induced water splitting, Cata. Lett., 80, 53-57(2002)
【15】L. Cao, F. J. Spiess, A. Huang and S. L. Suib,
Heterogeneous Photocatalytic Oxidation of 1-Butene
on SnO2 and TiO2 Film, J. Phys. Chem. B, 103, 2912-
2917(1999)
【16】S. Ahuja, T.R.N. Kutty, Nanoparticles of SrTiO3
prepared by gel to crystallite and their
photocatalytic activity in the mineralization
of phenol, J. Photochem. Photobiol. A, 97,99-107
(1996)
【17】簡國明、洪長春、吳典熹、王永銘、藍怡平,奈米二氧化鈦
專利地圖及分析,行政院國家科學委員會科學技術資料中心
,中華民國九十二年五月
【18】A. L. Linsebigler, G. Lu, J. T. Yates,
Photocatalysis on TiO2 Surfaces: Principles,
Mechanisms, and Selected Results, Chem. Rev., 95,
735-758 (1995)
【19】高濂,鄭珊,張青紅 著,奈米光觸媒,五南圖書出版股份有
限公司,2004年4月
【20】http://www.dfmg.com.tw/dasp/pigment/pg3-1-1b.htm
【21】S. Yin, R. X. Li, Q. L. He, T. Sato, Low
temperature synthesis of nanosize rutile titania
crystal in liquid media, Mater. Chem. Phys., 75, 76-
80 (2002)
【22】X. Z. Ding, X. H. Liu, Synthesis and microstructure
control of nanocrystalline titania powders via a sol-
gel process, Mater. Sci. Eng. A, 224, 210-215 (1997)
【23】H. Cheng, J. Ma, Z. Zhao and L. Qi, Hydrothermal
Preparation of Uniform Nanosize Rutile and Anatase
Particles, Chem. Mater., 7, 663-671 (1995)
【24】H. Mockel, M. Giersig, F. Willing, Formation of
uniform size anatase nanocrystals from bis(ammonium
lactato)titanium dihydroxide by thermohydrolysis, J.
Mater. Chem., 9, 3051-3056(1999)
【25】呂宗昕,化工技術,82,34,1993
【26】Q. Zhang, L. Gao, J. Guo, Effects of Calcinations on
the Photocatalytic Properties of Nanosized TiO2
Powders Prepared by TiCl4 Hydrolysis, Appl. Catal.
B: Envi., 26, 207-215 (2000)
【27】R. Zhang, L. Gao, Preparation of nanosized titania
by hydrolysis of alkoxide titanium in micelles,
Mater. Re. Bull., 37, 1659-1666(2002)
【28】光觸媒-享受清新及無菌環境的方案,
http://www.tynghann.com.tw/suit.html
【29】B. O’Regan, M. Gratzel, A low-cost, hight
efficiency solar cell based on dye-sensitized
colloidal TiO2 films. Nature. 353, 737-740(1991)
【30】M. Gratzel, Photoelectrochemical cells, Nature, 414,
338-344(2001)

【31】U. Bach, D. Lupo, P. Comte, J. E. Moser, F.
Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel,
Solid-stste dye-sensitized mesoporous TiO2 solar
cells with high photo-to-electron onversion
efficiencies, Nature, 395, 583-585 (1998)
【32】B. L. Bischoff, M. A. Anderson, Peptization Process
in the Sol-Gel Preparation of Porous Anatase(TiO2),
Chem. Mater., 7, 1772-1778(1995)
【33】M. Nakamura, K. Mori, M. Tanaka and Y. Nishizawa,
Titanium Dioxide Ceramic Paint and Methods of
Producing Same, U.S. Patent 5, 795, 251 (1998)
【34】H. Takahashi, A. Sakai, M. Hattori, Dendrite of
Asteroidal Titanium Dioxide Micro-Particles, U.S.
Patent 5, 536, 448 (1996)
【35】K. Yanagisawa, J. Ovenstone, Crystallization of
Anatase from Amorphous Titania Using the
Hydrothermal Technique: Effects of Starting Material
and Temperature, J. Phys. Chem. B, 103, 7781-7787
(1999)
【36】H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa,
H. Mori,T.Sakata and S. Yanagida, Hydrothermal
Synthesis of Nanosized Anatase and Rutile TiO2 using
Amorphous Phase TiO2, J. Mater. Chem., 11, 1694-1703
(2001)
【37】H. D. Nam, B. H. Lee, S. J. Kim, C. H. Jung, J. H.
Lee and S. Park, Preparation of Ultrafine
Crystalline TiO2 Powders from Aqueous TiCl4 Solution
by Precipitation, Jpn. J. Appl. Phys., 37, 4603-4608
(1998)
【38】Q. Zhang, L. Gao and J. Guo, Effects of Calcinations
on the Photocatalytic Properties of Nanosized TiO2
Powders Prepared by TiCl4 Hydrolysis, Appl. Catal.
B: Envi., 26, 207-215 (2000)
【39】Y. Qian, Q. Chen, Z. Chen, C. Fan and G. Zhou,
Preparation of Ultra Powders of TiO2 by Hydrothermal
H2O2 Oxidation Starting from Metallic Ti, J. Mater.
Chem., 3, 203-205 (1993)
【40】M. Sakamoto, H. O. Yokkaichi, S. K.Suzuka, and Y. Y.
Yokkaichi, Titania Sol, United States Patent 5, 049,
309 (1991)
【41】S. R. Dhage, V. D. Choube, S. Violet and V. Ravi,
Synthesis of nanocrystalline TiO2 at 100℃, Mater.
Lett., 58, 2310-2313 (2004)
【42】M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano and M.
Inagaki, Effect of crystallinity of anatase on
photoactivity for methyleneblue decomposition in
water, Appl. Cata., 49, 227-232(2004)
【43】S. S. Watson, D. Beydoun, J. A. Scott and R. Amal,
The effect of preparation method on the
photoactivity of crystalline titanium dioxide
particles, Chem. Eng. Jour., 95, 213-220 (2003)
【44】S. Yang, Y. Liu, Y. Guo, J. Zhao, H. Xu and Z. Wang,
Preparation of rutile titania nanocrystals by liquid
method at room temperature, Mater. Chem. And Phy.,
77, 501-506 (2002)
【45】M. A. Agerter, M. Jafelicci, D. F. Souza and E. D.
Zanotto, Sol-Gel Sciences and Technology, World
Scientifi, Brazil, 1989
【46】C. J. Brinker, G. W. Scherer, Sol-Gel Science,
Academic Press, New York, 1990
【47】A. C. Pierre, Introduction to Sol-Gel Processing,
Kluwer Academic Publishers, United States of
America, 2002
【48】M. Henry , J. P. Jolivet, J. Livage , Aqueous
Chemistry of Metal Cations, Hydrolysis,
Condensation, and Complexation, Spring-Verlag,
Berlin, 1992
【49】D. John, Sol-Gel Materials Chemistry and
Applications, Tayer & Francis Books Ltd., British,
2001
【50】周德瑜,四氯化鈦之控制水解研究,碩士學位論文,國立中
央大學化學工程研究所,2001
【51】L. V. Azaroff, Elements of X-ray Crystallography, Mc
Graw-Hill, 1990
【52】L.V. Azaroff and M. J. Buerger, The powder Method in
X-Ray Crystallography, Mc Graw-Hill, 1970
【53】D. E. Newbury, D. C. Joy, P. Echlin, C. Fiori and J.
I. Goldstein, Advanced Scanning Electron Microscopy
and X-ray Microanalysis, Plenum Press, New York, 1986
【54】J. I. Goldstein, D. E. Newbury, P. Echlin, D.C. Joy,
A. D. Romig, C. E. Lymen, C. Fiori and E. Lifshin,
Electron Microscopy and X-ray Microanalysis, Wiley,
London, 1992
【55】G. Leofanti, M. , Padovan, G. Tozzola and B.
Venturelli, Surface Area and Pore Texture of
Catalysts, Catal. Today, 41, 417-425(1998)
【56】周祖康,顧惕人,馬季銘 編著,膠體化學基礎,北京大學出
版社,1984年11月
【57】E. K. Karakitsou and X. E. Verykios, Effect of
Altervalent Doping of TiO2 on Its Performance as a
Photocatalyst for Water Cleavage J. Phy. Chem., 97,
1184-1189 (1993)
【58】H. Tang, K. Prasad, R. Sanjines, P. E. Schmid and F.
Levy, Electrical and optical of TiO2 anatase thin
films, J. Appl. Phy., 75-4, 2043-2047(1994)
【59】D. S. Seo, J. K. Lee, E. G. Lee and H. Kim, Effect
of aging agents on the formation of TiO2
nanocrystalline powder, Mater. Lett., 51, 115-119
(2001)
【60】S. Ito, S. Inoue, H. Kawada, M. Hara, M. Iwasaki, H.
Tada, Low-Temperature Synthesis of Nanimeter-Sized
Crystalline TiO2 Particles and Their Photoinduced
Decomposition of Formic Acid, J. Colloid Interface
Sci., 216, 59-64 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊