跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉哲延
研究生(外文):Jer-yan Liu
論文名稱:氣相光催化動力分析系統之研究
論文名稱(外文):Kinetic Analysis System for the Gas PhasePhotocatalysis Reaction
指導教授:張振昌
指導教授(外文):Alex C.-C. Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:87
中文關鍵詞:氣相光催化動力分析系統
外文關鍵詞:Kinetic Analysis System for the Gas Phase
相關次數:
  • 被引用被引用:2
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本實驗主要是建立光觸媒分解揮發性有機化合物的分析平台。分析平台使用原位偵測傅立葉穿透式紅外線光譜(in-situ Transmission FTIR)光觸媒反應器,以探討光觸媒分解揮發性有機化合物之反應機制。同時,亦使用氣相層析儀進行定量分析。此分析平台的潛在優點是在探討光觸媒反應時,同時提供定性的反應機構資訊以及定量分析的動力學數據,且在同一套反應系統中經由簡易的操作即可以搭配多種不同的反應條件,包括:批式或連續式、多種不同種類之氣體濃度分析器、多種不同波段之光源、多種種類之光觸媒、多種不同種類之揮發性有機化合物、以及不同之進料方式,這樣即可省去在不同反應條件下所需重新設計反應器的困擾。經由實驗結果分析所示,此分析平台確實可以應用到光觸媒分解揮發性有機化合物的檢測與研究上,並可以落實應用在多種不同反應條件上,而從原位偵測傅立葉穿透式紅外線光譜中可知甲醇在TiO2觸媒上進行光分解時會分解成甲醛、甲酸和甲基氧自由基等中間產物,最後甲酸進而再氧化分解成二氧化碳。而當在氧氣不足的情況下,甲醇分解後並不能完全氧化成二氧化碳,而是部分的一氧化碳。
The objective of this study is to establish an analysis system for photocatalyst decomposing of volatile organic compounds (VOCs).This analysis system uses in-situ Transmission FTIR photocatalytic reactor to investigate the reaction mechanism of photocatalyst decomposing of VOCs and uses gas chromatograph to determine quantitative analysis, providing the reaction mechanism and the kinetic data simultaneously.This reaction system can untilize various reaction conditions by simple operation. These conditions include batch mode reaction, continue mode reaction, gaseous detectors, light source, photocatalyst, VOCs, and VOCs injection model. This system can reduce time of redesign reactor at different condition. This experiment result show this system indeed can apply to many conditions. FTIR result shows TiO2 decompose CH3OH to intermediates, such as H2CO, CH3O•, HCOOH. Finally HCOOH decompose into CO2 and H2O.Under a O2 lean condition, CH3OH is partially oxidized to CO and CO2.
目錄
摘要 I
Abstract II
第一章 導論 1
第二章 原理與文獻回顧 3
2-1 觸媒基本觀念 3
2-2 表面科學 3
2-2-1 表面的定義 3
2-2-2 表面催化 4
2-2-3 表面吸附 5
2-3 文獻回顧 6
2-3-1 TiO2光催化的起源 6
2-3-2 二氧化鈦簡介 6
2-3-3 二氧化鈦的物理性質 7
2-3-4 二氧化鈦的光化學性質 8
2-3-5 光觸媒表面吸附現象 15
2-3-6 二氧化鈦的光催化反應 19
2-3-7 光催化反應器 22
2-3-8 相關文獻與本研究之比較 24
第三章 實驗目的與方法 26
3-1 實驗目的 26
3-2 實驗方法 27
3-2-1 實驗儀器 27
3-2-2 實驗藥品 29
3-2-3 實驗裝置 30
3-2-3-1 光催化反應系統主體單元 30
3-2-3-2 光觸媒主體反應單元 30
3-2-3-3 原位傅立葉穿透紅外線光譜光觸媒反應單元 31
3-2-3-4 光源供應單元 31
3-2-3-5 批式系統與連續式系統切換單元 32
3-2-3-6 氣態進料單元 32
3-2-3-7 液態注射進料單元 32
3-2-3-8 氣體濃度檢測單元 33
3-2-4 實驗步驟 34
3-2-4-1 光觸媒固定化製備 34
3-2-4-2 空白實驗 35
3-2-4-3 背景實驗 35
3-2-4-4 連續式紫外線/光觸媒反應程序 36
3-2-4-5 批式紫外線/光觸媒反應程序 36
3-2-4-6 原位傅立葉穿透紅外線光譜光觸媒反應程序 37
第四章 結果與討論 38
4-1 原位傅立葉穿透紅外線光譜結果分析 38
4-2 氣相層析儀(Gas Chromatograph)結果分析 46
4-2-1 連續式系統反應活性分析 46
4-2-2 批式反應測試平台活性分析 48
4-2-2-1 不同種類光觸媒 (UV-100/P-25) 49
4-2-2-2 不同反應體積 52
4-2-2-3 不同VOC種類 55
4-2-2-4 不同光源 59
第五章 結論與展望 63
附錄 65
附錄A 商用型光觸媒 65
A-1 Hombikat UV100 65
A-2 Degussa P 25 66
附錄B 檢量線 68
附錄C 氣相層析儀軟硬體參數設定 71
附錄D 常見氣體熱傳導度 73
參考文獻 74
1.Vickerman, J. C. , Surface Analysis, Wiley & Sons, 1997.
2.V. da Gama, R. T. H. , M. Almeida, and L. Alcacer,
Magnetic properties of the low-dimensional systems (Per)2M(mnt)2 (M = Cu and Ni), Physical Chemistry, 98, 997-1001, 1994.
3.卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛, 物理化學, 三民書局, 1994
4.Fujishima, A. , Honda, K. , Electrochemical photolysis of water at a semiconductor electrode, Nature, 37, 238-245, 1972.
5.Bard, A. J. , Design of semiconductor photoelectrochemical systems for solar energy conversion, J. Phys. Chem. , 86, 172-177, 1982.
6.Bard, A. J. , Photoelectrochemistry, Science, 207, 139-144, 1980.
7.Bin Xia, H. H. , Youchang Xie, Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis, Materials Science and Engineering B, 57, 150-154, 1999.
8.吳孟奇、洪勝富、連振析、龔正, 半導體元件, 東華書局, 初版民90.
9.盧明俊, 毒性化學物質經二氧化鈦催化之光氧化反應, 博士論文, 1993.
10.呂宗昕, 圖解奈米科技與光觸媒, 商周出版, 初版民92.
11.N. Serpone, S. H. N. W. H. O. H. H. , Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO2 immobilized fiberglass cloth. , Applied Catalysis B: Environmental, 37, 117-129, 2002.
12.江立偉, 以紫外線/光觸媒程序處理空氣中苯、甲苯及二甲苯氣體之反應行為, 碩士論文, 1998.
13.A. Laplanche, A. B. , Photocatalytic degradation of toluene in the gas phase: comparative study of some TiO2 supports, Journal of photochemistry and Photobiology A:Chemistry, 150, 207-212, 2002
14.A. L. Linsebigler, G. L. , and J. T. Yates, Jr. , Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. , 95, 735-758, 1995.
15.Jin, S. and F. Shiraishi, Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide, Chemical Engineering Journal, 97, 203-211, 2004.
16.Gratson, D. A. N. , M. R. and Wolfrum, E. J. , Photocatalytic Oxidation of Gas-Phase BTEX-Contaminated Waste Streams, The 88th Air & Waste Management Assoication., Annual Meeting, June, 1995.
17.Ao, C. H. and S. C. Lee, Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level, Journal of Photochemistry and Photobiology A: Chemistry, 161, 131-140, 2004.
18.Pinceloup, S. , G. Laverdet, F. Maguina, J. F. Doussin, P. Carlier, and G. L. Bras, Laboratory investigation of the photooxidation of formaldehyde combining FTIR analysis of stable species and HO2 detection by the chemical amplifier technique, Journal of Photochemistry and Photobiology A: Chemistry, 157, 275-281,2003
19.Piera, E. , M. I. Tejedor, M. E. Zorn, and M. A. Anderson, Relationship concerning the nature and concentration of Fe(III) species on the surface of TiO2 particles and photocatalytic activity of the catalyst, Applied Catalysis B: Environmental, 46, 671-685, 2003.
20.Ichiura, H. , T. Kitaoka, and H. Tanaka, Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique, Chemosphere, 50, 79-83, 2003.
21.Griffin, T. C. G. L. , Photooxidation of Methanol Using V205/Ti02 and MoO/TtO, Surface Oxide Monolayer Catalysts, J. Phys. Chem. B, 90, 5896-5900, 1986.
22.Ibusuki, T. T. , K. , Toluene Oxidation on UV-Irradiated Titanimn Dioxide with and without O2, NO2, or H2O at Ambient Temperature, Atmospheric Environment, 20, 1711, 1986.
23.Anderson, M. A. A.W. F. , X. and Tompkins, D. ,Chamber Studies Comparing the Effectiveness of Photocatalytic Degradtion and Activated Carbon for the Treatment of Indoor Air, Air & Waste Management Assoication Annual Meeting, June, 1996.
24.Peral, J. O. , D. F. , Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification : Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation,, J. Catal. , 134, 554-565, 1992.
25.Dibble, L. A. R. , G. B. , Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams, ES&T, 26, 492-495, 1992.
26.Hung, C. H. M. , B. J. , Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films, ES&T, 31(2), 562-568, 1997.
27.Ibusuki, T. K. S. T. , K. , Shin-Kai, K. , Sasamoto, T. and Miyamoto, M. , Removal of Low Concertration Air Pollutionts through Photoassisted Heterogeneous Catalysis in Photocatalytic Purification and Treatment of Water and Air, Elsevier: Amsterdam, 375, 1993.
28.Ao, C. H. , S. C. Lee, C. L. Mak, and L. Y. Chan, Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO, Applied Catalysis B: Environmental, 42, 119-129, 2003.
29.Peill, N. J. H. , M. R. , Chemical and Physical Characterization of a TiO2-Coated Fiber Optical Cable Reactor, ES&T, 30, 2806-2812, 1996.
30.光觸媒製品技術協議會, 光觸媒性能評價是驗法 I, 液相Film密著法. 2001年度版: Japan.
31.光觸媒製品技術協議會, 光觸媒性能評價是驗法 II a, Gas Bag A 法. 2001年度版: Japan.
32.光觸媒製品技術協議會, 光觸媒性能評價是驗法 II b, Gas Bag B 法. 2001年度版: Japan.
33.中山科學研究院化學研究所, 光觸媒VOC標準檢驗法. 2004: Taiwan.
34.台灣光觸媒產業發展協會, 光觸媒空氣淨化效能檢驗方法(TPIA-A1): Taiwan.
35.Arana, J. , O. Gonzalez Diaz, M. Miranda Saracho, J. M. Dona Rodriguez, J. A. Herrera Melian, and J. Perez Pena, Photocatalytic degradation of formic acid using Fe/TiO2 catalysts: the role of Fe3+/Fe2+ ions in the degradation mechanism, Applied Catalysis B: Environmental, 32, 49-61, 2001.
36.Kecskes, T. , J. Rasko, and J. Kiss, FTIR and mass spectrometric studies on the interaction of formaldehyde with TiO2 supported Pt and Au catalysts, Applied Catalysis A: General, 273, 55-62, 2004.
37.Guido Busca, J. L. , Jean-Claude Lavalley, Vincenzo Lorenzelli, FTIR Study of the Adsorption and Transformation of Formaldehyde on Oxide Surfaces, J. Am. Chem. Soc. , 109, 5197-5202, 1987.
38.Rasko, J. , T. Kecskes, and J. Kiss, Adsorption and reaction of formaldehyde on TiO2-supported Rh catalysts studied by FTIR and mass spectrometry, Journal of Catalysis, 226, 183-191, 2004.
39.Arana, J. , J. L. Martinez Nieto, J. A. Herrera Melian, J. M. Dona Rodriguez, O. Gonzalez Diaz, J. Perez Pena, O. Bergasa, C. Alvarez, and J. Mendez, Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories, Chemosphere, 55, 893-904, 2004.
40.Ao, C. H. , S. C. Lee, J. Z. Yu, and J. H. Xu, Photodegradation of formaldehyde by photocatalyst TiO2:effects on the presences of NO, SO2 and VOCs, Applied Catalysis B, 54, 41-50, 2004.
41.F. Boccuzzi, A. C. , M. Manzoli, FTIR study of methanol decomposition on gold catalyst for fuel cells, Journal of Power Sources, 118, 304-310, 2003.
42.Kecskes, T. , J. Rasko, and J. Kiss, FTIR and mass spectrometric study of HCOOH interaction with TiO2 supported Rh and Au catalysts, Applied Catalysis A: General, 268, 9-16, 2004.
43.Rasko, J. , T. Kecskes, and J. Kiss, Formaldehyde formation in the interaction of HCOOH with Pt supported on TiO2, Journal of Catalysis, 224, 261-268, 2004.
44.El-Maazawi, M. , A.N. Finken, A. B. Nair, and V. H. Grassian, Adsorption and Photocatalytic Oxidation of Acetone on TiO2: An in Situ Transmission FTIR Study, Journal of Catalysis, 191, 138-146, 2000.
45.Ulrich Siemon , D. B. , Juan J. Testa , Diana Rodriguez , and Marta I. Litter , Natalia Bruno , Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 148, 247-255, 2002.
46.Stevens, R. W. J. , Steven. S. C. Chuang, and B. H. Davis, In situ infrared study of pyridine adsorption/desorption dynamics over sulfated zirconia and Pt-promoted sulfated zirconia, Applied Catalysis A, 252, 574, 2003.
47.Chih-Chung Chuang, Chih-Cheng Chen, and Jong-Liang Lin, Photochemistry of Methanol and Methoxy Groups Adsorbed on Powdered TiO2, J. Phys. Chem. B, 103, 2439-2444, 1999.
48.G. S. Wong, D. D. K. , and J. M. Vohs, The Oxidation of Methanol to Formaldehyde on TiO2(110)-Supported Vanadia Films, J. Phys. Chem. B, 105, 1366-1373, 2001.
49.Lukaski, A. C. and D. S. Muggli, Photocatalytic oxidation of methyl formate on TiO2: a transient DRIFTS study, Journal of Catalysis, 223, 250-261, 2004.
50.Chih-Chung Chuang, Wen-Chun Wu, Ming-Chih Huang, I-Chieh Huang, and Jong-Liang Lin1, FTIR Study of Adsorption and Reactions of Methyl Formate on Powdered TiO2, Journal of Catalysis, 185, 423-434, 1999.
51.Arana, J. , J. M. Dona-Rodriguez, C. Garriga i. Cabo, O. Gonzalez-Diaz, J. A. Herrera-Melian, and J. Perez-Pena, FTIR study of gas-phase alcohols photocatalytic degradation with TiO2 and AC-TiO2, Applied Catalysis B: Environmental, 53, 221-232, 2004.
52.G. Ya. Popova, T. V. A. , Yu. A. Chesalov, and E. S. Stoyanov, In situ FTIR Study of the Adsorption of Formaldehyde,Formic Acid, and Methyl Formiate at the Surface of TiO2 (Anatase), Kinetics and Catalysis, 41, 805-811, 2000.
53.Boccuzzi, F. , A. Chiorino, and M. Manzoli, FTIR study of methanol decomposition on gold catalyst for fuel cells, Journal of Power Sources, 118, 304-310, 2003.
54.Schrader, J. F. E. G. L. , Methanol, Formaldehyde, and Formic Acid Adsorption on Methanol Synthesis Catalysts, J. Phys. Chem. B, 89, 782-788, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top