跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王祉雯
研究生(外文):Zei Wen
論文名稱:發展在大腸桿菌中大量生產重組蛋白質之有效方法
論文名稱(外文):Development of efficient methods for high-level production of recombinant proteins in Escherichia coli
指導教授:趙雲鵬
指導教授(外文):Yun-Peng Chao
學位類別:博士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:97
中文關鍵詞:Clp水解蛋白VHb大量表達天冬胺酸TrxA生理反應
外文關鍵詞:Clp proteolysisstringent responseVitreoscilla hemoglobinthioredoxinaspartaseoverproduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸桿菌表達系統被已廣泛地運用在生產異源重組蛋白質上,因為大腸桿菌的生理學與種種代謝機制已漸被研究透徹,運用上也有成熟的生物技術。不幸地,當利用大腸桿菌大量生產重組蛋白質時,往往對於細菌本身產生很大的代謝負擔反應。這種生理負擔會造成細菌的生長遲緩或抑制進而引發各種壓力反應產生負面後果,包括生產的重組蛋白質遭到蛋白脢分解、細菌生長受抑制或細胞內 rRNA 受損,其而導致核糖體瓦解和細菌死亡。在這一系列研究中,我們利用thioredoxin 和 Vitreoscilla hemoglobin (VHb) 的融合蛋白去改善在大腸桿菌生產重組蛋白質時的生理狀態,及提高細菌對於代謝負擔的抗壓性。當使用含thioredoxin 和Vitreoscilla hemoglobin (VHb) 的融合蛋白表達系統去大量生產重組蛋白質時,可以避免重組蛋白質被分解的命運且舒緩細胞產生代謝負擔,進而得到較高產量的重組蛋白質。
另外利用L-aspartate ammonia-lyase分解天冬胺酸生成丁烯二酸而提供額外的草醋酸 (OAA) 到TCA循環中,藉此改變大腸桿菌代謝的碳流量分佈,以提高中樞代謝途徑的效率,亦成功地增加重組蛋白質的產量。
Escherichia coli strain is the most commonly used producer cell for the expression of recombinant proteins. This is mainly because the biological properties of the bacterium have been well characterized, and the tools for its genetic manipulation are readily available. However, in response to a massive production of recombinant proteins, the physiological state in E. coli is greatly altered. It usually brings up the metabolic stress on the cells, usually leading to the retardation of their growth, proteolysis of recombinant proteins, disintegration of cellular rRNAs, and cell death as a result of ribosome disruption. In this study, to combat with these detrimental threats, E. coli strain was engineered to express both thioredoxin and Vitreoscilla hemoglobin for improving its physiological fitness. By a series of examination, such a strain after engineering was endowed with remarkable capabilities in protecting the produced proteins from proteolytic attack, enhancing cell growth without eliciting adverse effects caused by the metabolic burden due to the massive production of proteins in the cell, and increasing the yield of produced recombinant proteins.
Alternatively, an extra supply of intermediate metabolites in TCA cycle was approached in E. coli. This was done by the production of L-aspartate ammonia-lyase (aspartase) which mediates the conversion of aspartate to fumarate. As a result, the production of recombinant proteins could be greatly enhanced in aspartase-expressing E. coli strain.
Contents
Chapter 1. Introduction -----01
Chapter 2. Enhancement of recombinant.protein production in Escherichia coli by coproduction of aspartase -----17Chapter 3. Methods for .achieving .overproduction of recombinant proteins in stress-challenged Escherichia coli-----30
Chapter 4. Suppression of .the Clp-mediated .proteolysis in Escherichia coli by the combined act of TrxA and VHb -----55
Chapter 5. Suppression .of .the. stringent responses in Escherichia coli by the combined act of TrxA and VHb -----75
Chapter 1
Grisshammer R, Tate CG. 1995. Overexpression of integral membrane proteins for structural studies. Q. Rev. Biophys. 28:315-422.
Hockney RC. 1994. Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12:456-463.
Chao YP, Chern JT, Wen CS. 2001. Coupling the T7 A1 promoter to the runaway-replication vector as an efficient method for stringent control and high-level expression of lacZ. Biotechnol. Prog. 17:203-207.
Wang ZW, Law WS, Chao YP. 2004. Improvement of the thermoregulated T7 expression system by using the heat-sensitive lacI. Biotechnol. Prog. 20:1352-1358.
Wang ZW, Huang WB, Chao YP. 2005. Efficient production of recombinant proteins in Escherichia coli using an improved L-arabinose-inducible T7 expression system. Process Biochem. 40:3137-3142.
Sorensen HP, Laursen BS, Mortensen KK, Sperling-Petersen HU. 2002 Bacterial translation initiation–mechanism and regulation. Recent Res. Dev. Biophys. Biochem. 2:243-270.
Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L. 1992. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6:1219-1229.
Olins PO, Rangwala SH. 1990. Vector for enhanced translation of foreign genes in Escherichia coli. Meth. Enzymol. 185:115-119.
Emory SA, Bouvet P, Belasco JG. 1992. A 5''-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev. 6:135-148.
Gerdes K, Helin K, Christensen OW, Lobner-Olesen A. 1988. Translational control and differential RNA decay are key elements regulating postsegregational expression of the killer protein encoded by the parB locus of plasmid R1. J. Mol. Biol. 203:119-129.
Poole ES, Brown CM, Tate WP. 1995. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 14:151-158.
Brosius J, Ullrich A, Raker MA, Gray A, Dull TJ, Gutell RR, Noller HF. 1981. Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid 6:112-118.
Sorensen HP, Mortensen KK. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115:113-128.
Sorensen HP, Kristensen JE, Sperling-Petersen HU, Mortensen KK. 2004. Soluble expression of aggregating proteins by covalent coupling to the ribosome. Biochem. Biophys. Res. Commun. 319:715-719.
Tobias JW, Shrader TE, Rocap G, Varshavsky A. 1991. The N-end rule in bacteria. Science 254:1374-1377.
Varshavsky A. 1996. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. U.S.A. 93:12142-12149.
Rogers S, Wells R, Rechsteiner M. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364-368.
Georgiou G, Valax P. 1996. Expression of correctly folded proteins in Escherichia coli. Curr. Opin. Biotechnol. 7:190-197.
Sorensen HP, Mortensen KK. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell. Fact. 4:1.
Miroux B, Walker JE. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260:289-298.
Novy D, Drott D, Yaeger K, Mierendorf R. 2001. Overcoming the codon bias of E.coli for enhanced protein expression. Innovations 12:1-3.
Manting EH, Driessen AJ. 2000. Escherichia coli translocase: the unravelling of a molecular machine. Mol. Microbiol. 37:226-238.
Blight MA, Chervaux C, Holland IB. 1994. Protein secretion pathway in Escherichia coli. Curr. Opin. Biotechnol. 5:468-474.
Cornelis P. 2000. Expressing genes in different Escherichia coli compartments. Curr. Opin. Biotechnol. 11:450-454.
Thomas JG, Ayling A, Baneyx F. 1997. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. To fold or to refold. Appl. Biochem. Biotechnol. 66:197-238.
Wang H, Chong S. 2003. Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex. Proc. Natl. Acad. Sci. U.S.A. 100:478-483.
Gottesman S, Wickner S, Maurizi MR. 1997. Protein quality control: triage by chaperones and proteases. Genes Dev. 11:815-823.
Tomoyasu T, Mogk A, Langen H, Goloubinoff P, Bukau B. 2001. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40:397-413.
Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381:571-579.
Mogk A, Mayer MP, Deuerling E. 2002. Mechanisms of protein folding: molecular chaperones and their application in biotechnology. Chembiochem 3:807-814.
Nishihara K, Kanemori M, Yanagi H, Yura T. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66:884-889.
Amrein KE, Takacs B, Stieger M, Molnos J, Flint NA, Burn P. 1995. Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli expression system overproducing the bacterial chaperones GroES and GroEL. Proc. Natl. Acad. Sci. U.S.A. 92:1048-1052.
Weichart D, Querfurth N, Dreger M, Hengge-Aronis R. 2003. Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli. J. Bacteriol. 185:115-125.
Rosen R, Biran D, Gur E, Becher D, Hecker M, Ron EZ. 2002. Protein aggregation in Escherichia coli: role of proteases. FEMS Microbiol. Lett. 207:9-12.
Haldimann A, Wanner BL. 2001. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J. Bacteriol. 183:6384-6393.
Gottesman S, Clark WP, Maurizi MR. 1990. The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identification of a Clp-specific substrate. J. Biol. Chem. 265:7886-7893.
Bahl H, Echols H, Straus DB, Court D, Crowl R, Georgopoulos CP. 1987. Induction of the heat shock response of E. coli through stabilization of sigma 32 by the phage lambda cIII protein. Genes Dev. 1:57-64.
Kurland CG, Dong H. 1996. Bacterial growth inhibition by overproduction of protein. Mol. Microbiol. 21:1-4.
Dong H, Nilsson L, Kurland CG. 1995. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J. Bacteriol. 177:1497-1504.
Diaz-Ricci JC, Regan L, Bailey JE. 1991. Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of Escherichia coli. Biotechnol. Bioeng. 38:1318-1324.
Farmer WR, Liao JC. 1997. Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol. 63:3205-3210.
March JC, Eiteman MA, Altman E. 2002. Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl. Environ. Microbiol. 68:5620-6524.
Ogawa J, Shimizu S. 1999. Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol. 17:13-20.
Rehm BAH. 2001. Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl. Microbiol. Biotechnol. 57:579-592.
Aristidou AA, San KY, Bennett GN. 1995. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnol. Prog. 11:475-478.
EI-Mansi EMT, Holms WH. 1989. Control of carbon flux to acetate excretion during growth of E. coli in batch and continuous culture. J. Gen. Microbiol. 135:2875-2883.
Chou CH, Bennett GN, San KY. 1994. Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production in Escherichia coli dense cultures. Biotechnol. Bioeng. 44:952-960.
Aristidiou AA, San KY, Bennett GN. 1999. Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source. Biotechnol. Prog. 15:140-145.
Shiloach J, Kaufman J, Guillard AS, Fass R. 1996. Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (DE3) and Escherichia coli JM109. Biotechnol. Bioeng. 49:421-428.
Chao YP, Liao JC. 1993. Alteration of growth yield by overexpression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli. Appl. Environ. Microbiol. 59:4261-4265.
Neidhardt FC, Ingraham JL, Schaechter M. 1990. Physiology of the bacterial cell: A molecular approach. Sinauer Associates, Inc. Massachusetts.
Aberg A, Hahne S, Karlsson M, Larsson A, Ormo M, Ahgren A, Sjoberg BM. 1989. Evidence for two different classes of redox-active cysteines in ribonucleotide reductase of Escherichia coli. J. Biol. Chem. 264:12249-12252.
Zheng M, Aslund F, Storz G. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718-1721.
LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N.Y.) 11:187-193.
Yasukawa T, Kanei-Ishii C, Maekawa T, Fujimoto J, Yamamoto T, Ishii S. 1995. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. Biol. Chem. 270:25328-25331.
Webster DA, Liu CY. 1974. Reduced nicotinamide adenine dinucleotide cytochrome o reductase associated with cytochrome o purified from Vitreoscilla. Evidence for an intermediate oxygenated form of cytochrome o. J. Biol. Chem. 249:4257-4260.
Wakabayashi S, Matsubara H, Webster DA. 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322:481-483.
Orii Y, Webster DA. 1986. Photodissociation of oxygenated cytochrome o(s) (Vitreoscilla) and kinetic studies of reassociation. J. Biol. Chem. 261:3544-3547.
Khosla C, Bailey JE. 1988. The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence and genetic expression in Escherichia coli. Mol. Gen. Genet. 214:158-156.
Khosla C, Bailey JE. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331:633-635.
Khosla C, Curtis JE, DeModena J, Rinas U, Bailey JE. 1990. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology (N.Y.) 8:849-853.
Khosravi M, Webster DA, Stark BC. 1990. Presence of bacterial hemoglobin gene improves a-amylase production of a recombinant Escherichia coli strain. Plasmid 24:190-194.
Kallio PT, Bailey JE. 1996. Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of alpha-amylase and neutral protease in Bacillus subtilis. Biotechnol. Prog. 12:31-39.
Pendse GJ, and Bailey JE. 1994. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant chinese hamster ovary cells. Biotechnol. Bioeng. 44:1367-1370.
Tsai PS, Rao G, and Bailey JE. 1995. Improvement of Escherichia coli microaerobic oxygen metabolism by Vitreoscilla hemoglobin: new insights from NAD(P)H fluorescence and culture redox potential. Biotechnol. Bioeng. 47:347-354.
Wosten MM. 1998. Eubacterial sigma-factors. FEMS Microbiol. Rev. 22:127-150.
Ishihama A. 1997. Adaptation of gene expression in stationary phase bacteria. Curr. Opin. Genet. Dev. 7:582-588.
Smith CK, Baker TA, Sauer RT. 1999. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc. Natl. Acad. Sci. U.S.A. 96:6678-6682.
Maurizi MR, Clark WP, Katayama Y, Rudikoff S, Pumphrey J, Bowers B, Gottesman S. 1990. Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J. Biol. Chem. 265:12536-12545.
Dougan DA, Reid BG, Horwich AL, Bukau B. 2002. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9:673-683.
Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA. 2003. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11:671-683.
Flynn JM, Levchenko I, Seidel M, Wickner SH, Sauer RT, Baker TA. 2001. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. U.S.A. 98:10584-10589.
Quastel JH, Woolf B. 1926. The equilibrium between l-aspartic acid, fumaric acid and ammonia in presence of resting bacteria. Biochem. J. 20:545-555.

Chapter 2
Chao YP, Liao JC. 1993. Alteration of growth yield by overexpression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli. Appl. Environ. Microbiol. 59:4261-4265.
Chao YP, Chiang CJ, Wang YL, Wang ZW. 2003. Applicability of new expression vectors for both engineering uses and biological studies. Biotechnol. Prog. 19:1076-1080.
Haldimann A, Wanner BL. 2001. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J. Bacteriol. 183:6384-6393.
Chao YP, Chiang CJ, Hung WB. 2002. Stringent regulation and high-level expression of heterologous genes in Escherichia coli using T7 expression system controllable by the araBAD promoter. Biotechnol. Prog. 18:394-400.
Chao YP, Lo TE, Luo NS. 2000. Selective production of L-aspartic acid and L-phenylalanine by coupling reactions of aspartase and aminotransferase in Escherichia coli. Enzyme Microb. Technol. 27:19-25.
Woods SA, Guest JR. 1987. Differential roles of the Escherichia coli fumarases and fnr-dependent expression of fumarase B and aspartase. FEMS Microbiol. Lett. 48:219-224.
Marcus M, Halpern YS. 1969. The metabolic pathway of glutamate in Escherichia coli K-12. Biochem. Biophys. Acta. 177:314-320.
Morikawa M, Izui K, Taguchi M, Katsuki H. 1980. Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. I. Estimation of the activities in the cells grown on various compounds. J. Biochem. 87:441-449.
Janausch IG, Zientz E, Tran QH, Kroger A, Unden G. 2002. C4-dicarboxylate carriers and sensors in bacteria. Biochem. Biophys. Acta. 1553:39-56.
McFall E, Newman EB. 1996. Amino acids as carbon sources. 358-379. In Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, and Umbarger HE (ed.). Escherichia coli and Salmonella: Cellular and molecular biology, ASM Press, Washington, D. C.
March JC, Eiteman MA, Altman E. 2002. Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl. Environ. Microbiol. 68:5620-6524.
Jung HM, Park KH, Kim SY, Lee JK. 2004. L-Glutamate enhances the expression of Thermus Maltogenic amylase in Escherichia coli. Biotechnol. Prog. 20:26-31.
Ramirez DM, Bentley WE. 1993. Enhancement of recombinant protein synthesis and stability via coordinated amino acid addition. Biotechnol. Bioeng. 41:557-565.

Chapter 3
Linnane AW, Beilharz MW, McMullen GL, Macreadie IG, Murphy M, Nisbet IT, Novitski CE, Woodrow GC. 1984. Nucleotide sequence and expression in E. coli of a human interferon-alpha gene selected from a genomic library using synthetic oligonucleotides. Biochem. Int. 8:725-732.
Austruy E, Bagnis C, Carbuccia N, Maroc C, Birg F, Dubreuil P, Mannoni P, Chabannon C. 1998. A defective retroviral vector encoding human interferon-alpha2 can transduce human leukemic cell lines. Cancer Gene Ther. 5:247-256.
Wang ZW, Law WS, Chao YP. 2004. Improvement of the thermoregulated T7 expression system by using the heat-sensitive lacI. Biotechnol. Prog. 20:1352-1358.
Chao YP, Fu H, Wang YL, Huang WB, Wang JY. 2003. Molecular cloning of the carboxylesterase gene and biochemical characterization of the encoded protein from Pseudomonas citronellolis ATCC 13674. Res. Microbiol. 154:521-526.
Wang ZW, Chen Y, Chao YP. 2006. Enhancement of recombinant protein production in Escherichia coli by coproduction of aspartase. J. Biotechnol. 124:403-411.
Miroux B, Walker JE. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260:289-298.
Prim N, Blanco A, Martinez J, Pastor FIJ, Diaz P. 2000. estA, a gene coding for a cell-bound esterase from Paenibacillus sp. BP-23, is a new member of the bacterial subclass of type B carboxylesterases. Res. Microbiol. 151:303-312.
Chao YP, Law W, Chen PT, Hung WB. 2002. High production of heterologous proteins in Escherichia coli using the thermo-regulated T7 expression system. Appl. Microbiol. Biotechnol. 58:446-453.
Vazquez-Laslop N, Lee H, Hu R, Neyfakh AA. 2001. Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J. Bacteriol. 183:2399-2404.
Khalameyzer V, Fischer I, Bornscheuer UT, Altenbuchner J. 1999. Screening, nucleotide sequence, and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Appl. Environ. Microbiol. 65:477-482.
Miller JH. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory 352-355.
Chao YP, Juang TY, Chern JT, Lee CK. 1999. Production of D-p-hydroxyphenylglycine by N-carbamoyl-D-amino acid amidohydrolase-overproducing Escherichia coli strains. Biotechnol. Prog. 15:603-607.
Dong H, Nilsson L, Kurland CG. 1995. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J. Bacteriol. 177:1497-1504.
Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. 1998. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J. Biol. Chem. 273:6297-6302.
Stewart V, Parales J Jr. 1988. Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J. Bacteriol. 170:1589-1597.

Chapter 4
Stewart V, Parales J Jr. 1988. Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J. Bacteriol. 170:1589-1597.
Chao YP, Chern JT, Wen CS, Fu H. 2002. Construction and characterization of thermo-inducible vectors derived from heat-sensitive lacI genes in combination with the T7 A1 promoter. Biotechnol. Bioeng. 79:1-8.
Wang ZW, Chen Y, Chao YP. 2006. Enhancement of recombinant protein production in Escherichia coli by coproduction of aspartase. J. Biotechnol. 124:403-411.
Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97:6640-6645.
Haldimann A, Wanner BL. 2001. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J. Bacteriol. 183:6384-6393.
Miller JH. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory 352-355.
Chao YP, Chiang CJ, Hung WB. 2002. Stringent regulation and high-level expression of heterologous genes in Escherichia coli using T7 system controllable by the araBAD promoter. Biotechnol. Prog. 18:394-400.
Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64:2240-2246.
Hengge-Aronis R. 2002. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66:373-395.
Kanemori M, Nishihara K, Yanagi H, Yura T. 1997. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179:7219-7225.
Katayama Y, Gottesman S, Pumphrey J, Rudikoff S, Clark WP, Maurizi MR. 1988. The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component. J. Biol. Chem. 263:15226-15236
Norrander J, Kempe T, Messing J. 1983. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101-106.
Lanzer M, Bujard H. 1988. Promoters largely determine the efficiency of repressor action. Proc. Natl. Acad. Sci. U.S.A. 85:8973-8977.
Churchward G, Belin D, Nagamine Y. 1984. A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 31:165-171.
Hersch GL, Baker TA, Sauer RT. 2004. SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proc. Natl. Acad. Sci. U.S.A. 101:12136-12141.

Chapter 5
Wang ZW, Chen Y, Chao YP. 2006. Enhancement of recombinant protein production in Escherichia coli by coproduction of aspartase. J. Biotechnol. 124:403-411.
Haldimann A, Wanner BL. 2001. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J. Bacteriol. 183:6384-6393.
Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97:6640-6645.
Miller JH. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory 352-355.
Chao YP, Juang TY, Chern JT, Lee CK. 1999. Production of D-p-hydroxyphenylglycine by N-carbamoyl-D-amino acid amidohydrolase-overproducing Escherichia coli strains. Biotechnol. Prog. 15:603-607.
Little R, Bremer H. 1982. Quantitation of guanosine 5'',3''-bisdiphosphate in extracts from bacterial cells by ion-pair reverse-phase high-performance liquid chromatography. Anal Biochem. 126:381-388.
Atkinson DE. 1968. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030-4034.
Chapman AG, Fall L, Atkinson DE. 1971. Adenylate energy charge in Escherichia coli during growth and starvation. J. Bacteriol. 108:1072-1086.
Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kornberg A. 2001. Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293:705-708.
Gentry DR, Hernandez VJ, Nguyen LH, Jensen DB, Cashel M. 1993. Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J. Bacteriol. 175:7982-7989.
Kuroda A, Murphy H, Cashel M, Kornberg A. 1997. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J. Biol. Chem. 272:21240-21243.
Rao NN, Liu S, Kornberg A. 1998. Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. J. Bacteriol. 180:2186-2193.
Zhang Y, Zhang J, Hara H, Kato I, Inouye M. 2005. Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J. Biol. Chem. 280:3143-3150.
Norrander J, Kempe T, Messing J. 1983. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101-106.
Lanzer M, Bujard H. 1988. Promoters largely determine the efficiency of repressor action. Proc. Natl. Acad. Sci. U.S.A. 85:8973-8977.
Churchward G, Belin D, Nagamine Y. 1984. A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene 31:165-171.
Reece KS, Phillips GJ. 1995. New plasmids carrying antibiotic-resistance cassettes. Gene 165:141-142.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top