跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林祺能
研究生(外文):Chi-Neng Lin
論文名稱:矽膠固定化細胞暗醱酵產氫技術
論文名稱(外文):Biohydrogen from Dark Fermentation of Cells Immobilization by Silicone Gel
指導教授:吳石乙
指導教授(外文):Shu-Yii Wu
學位類別:博士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:137
中文關鍵詞:暗醱酵生物產氫矽膠連續攪拌式厭氧生物反應器固定化細胞上升管式流體化床
外文關鍵詞:Immobilized cellsDraft tube fluidized bedContinuously stirred anaerobic bioreactorDark hydrogen fermentationSilicone gel
相關次數:
  • 被引用被引用:31
  • 點閱點閱:719
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用微生物將廢棄有機物或生質體,經由生物轉化成乾淨能源氫氣,是一項創新且可提供永續能源的生物技術。本研究主要目的在開發適合連續式反應器操作之高產氫速率固定化細胞技術,希望藉由固定化產氫菌群,能夠穩定生物產氫反應及避免菌體洗出而造成反應器操作失敗的現象,並進一步提升醱酵產氫速率。
在固定化細胞技術的開發過程中,首先必須考量固定化細胞擔體的機械強度與產氫穩定性。因此經過多方嘗試後,選用矽膠合成高分子為主要固定化細胞擔體材料,再以矽膠(Silicone gel, SC)固定化細胞作為生物觸媒進行批次暗醱酵產氫實驗,探討碳源(葡萄糖、果糖、蔗糖及木糖)、基質濃度(5-40 g COD/l)及溫度效應(30-50 ℃)對產氫之影響。結果顯示,碳源以葡萄糖在基質濃度20 g COD/l下,有最佳的產氫速率(vH2)與氫氣產率(YH2)分別為130.7 ± 7.1 ml H2/h/g VSS和0.76 ± 0.04 mol H2/mol glucose,同時最佳的產氫操作溫度為40 ℃。SC固定化細胞經過重複批次馴養後能夠提升約1.1-2.3倍的產氫速率(vH2)。產氫生物動力學可用Andrews修正模式描述產氫速率與限量碳源濃度的關係。液相代謝物的組成分析結果顯示,矽膠固定化細胞能夠有效的進行生物產氫。
為了要提升固定化細胞產氫效率,因此將矽膠固定化細胞置入於上升管式流化床反應器內(Draft tube fluidized bed reactor, DTFBR)進行連續式醱酵產氫程序,並改變水力滯留時間(Hydraulic retention time, HRT) 8.9-2.2 h與蔗糖進料濃度(Cs)為5-40 g COD/l,探討對生物產氫之影響。結果顯示,隨著蔗糖濃度的增加或是HRT 的調降,產氫速率(vH2)也隨之增加,而氫氣產率(YH2)則是逐漸的下降。系統在Cs 40 g COD/l、HRT 2.2 h時有最佳vH2 為2.27 ± 0.13 l/h/l,另外,系統在Cs 40 g COD/l及HRT 8.9 h時有最佳YH2 為 4.98 ± 0.18 mol H2/mol sucrose)。另外, vH2 與有機進料速率(Organic loading rate, OLR)之關係式可用Monod-type 修正模式描述。產氫過程中氫氣濃度可保持在40%以上,主要之液態代謝物以乙酸(Acetic acid, HAc)與丁酸(Butyric acid, HBu)為主,分別佔總可溶性代謝物(Soluble microbial product, SMP)的16-22%、62-73%。利用DTFBR進行產氫長期操作時擁有穩定的產氫狀態與產氫再現性,當產氫不穩定時可利用熱處理方法(70-80 ℃、1 h)快速恢復產氫效能。
為了要實際應用生物氫氣於燃料電池上,因此設計一個連續攪拌式厭氧生物反應器(Continuously stirred anaerobic bioreactor, CSABR),並填入以矽膠固定化細胞為生物觸媒進行醱酵產氫。系統進料以蔗糖(Sucrose)為單一碳源,HRT與基質濃度分別控制在6 h與30 g COD/l。結果顯示,系統之最佳產氫速率(vH2)與氫氣產率(YH2)分別為1.15 ± 0.08 l/h/l和3.71 ± 0.18 mol H2/mol sucrose,另外系統也可操作達300天以上。CSABR所產生之生物氣體經由CO2吸收劑與矽膠除水裝置後,可得純度達> 99%之氫氣,氫氣(1.72 l/h)再經由燃料電池系統(Proton exchange membrane fuel cell, PEMFC)可產生3.30 ± 0.04 V的穩定電壓,如果接上一個小型的發光二極體(Light emitting diode, LED)面板,就可產生0.87W (25 ℃)的能量,其中電壓與電流分別為2.28 V與0.38 A。
Using anaerobic microorganisms for hydrogen production from waste organics or biomass have become an innovation and promising biotechnology. Moreover, biohydrogen production combined with fuel cells could commit the increased demand of renewable hydrogen for the transition to the Hydrogen Economy. The object of this study was to find a new material to immobilized H2-producing bacteria, which also can be applied in continuously bioreactors. The immobilized cells can not only maintain or increase the hydrogen production rate, but also avoid the biomass washout at low hydraulic retention time (HRT), which results in the failed operation during the long-term fermentative hydrogen production.
Under the development of cell immobilization researches, the mechanism and the stability of immobilized cells for hydrogen production have to be considered. In this study, a novel synthetic polymer (Silicone gel, SC) was used to immobilize acclimated sewage sludge for fermentative hydrogen production. Using glucose, fructose, sucrose and xylose as the sole carbon substrate, respectively, our laboratory developed SC immobilized cells achieved a higher hydrogen production rate (vH2) of 130.7 ± 7.1 ml H2/g VSS and the best substrate-based yield (YH2/glucose) of 0.76 ± 0.04 mol H2/mol glucose at substrate concentration of 20 g COD/l. Operation at temperature 40 oC resulted in the highest hydrogen production rate. Acclimation of the sewage sludge allowed up to 1.1-2.3 folds enhancement on the performance of hydrogen production. Kinetic studies showed that modified Andrews model was able to describe the dependence of specific hydrogen production rate on substrates concentration. The composition of soluble metabolites was found to be a reliable indicator for the efficiency of biohydrogen production.
For practical application of SC immobilized cells in a continuously bioreactor, a draft tube fluidized bed reactor (DTFBR) was designed to produce H2. The SC immobilized cells were used as the biocatalyst for H2 production in DTFBR with a working volume of 8 l. The DTFBR system was operated at HRT of 2.2-8.9 h and an influent sucrose concentration (Cs) of 5-40 g COD/l. The results showed that in general decreasing HRT or increasing sucrose concentration led to a marked increase in the volumetric H2 production rate (vH2), but a gradual decrease in the H2 yield (YH2). The best vH2 (2.27 ± 0.13 l/h/l) occurred at Cs 40 g COD/l and HRT 2.2 h, whereas the highest YH2 (4.98 ± 0.18 mol H2/mol sucrose) was obtained at Cs 40 g COD/l and HRT 8.9 h. The correlation between the production rate and the organic loading rate (OLR) could be successfully described by modified Monod-type models. The H2 content in the biogas was stably maintained at over 40%. The major soluble products were butyric acid and acetic acid, as they accounted for 62-73% and 16-22% of total soluble microbial products (SMP), respectively. The H2-producing performance in the DTFBR system could be stably maintained and reproducible in long-term operations, while unstable operations could be quickly recovered via proper thermal treatment at 70-80 oC for 1 h.
For further practical application of biohydrogen in proton-exchange-membrane fuel cell (PEMFC) system, a dark H2 fermentation process was designed and integrated with PEMFC for on-line electricity generation. The H2 producing system was a continuously stirred anaerobic bioreactor (CSABR) seeded with SC immobilized sludge. The CSABR system, using sucrose as the sole carbon substrate, was able to continuously and stably produce H2 for over 300 days at HRT of 6 h and an influent sucrose concentration of 30 g COD/l. The maximum H2 production rate and the best H2 yield were 1.15 ± 0.08 l/h/l and 3.71 ± 0.18 mol H2/mol sucrose, respectively. The H2 produced from the CSABR system was purified via a CO2 absorber and a silica-gel desiccator, and then the > 99 % pure H2 was fed into a PEMFC system at a rate of 1.72 l/h, generating electricity with a stable electromotive force of 3.30 ± 0.04 V. While connecting to a small light emitting diode (LED) panel, the output power was ca. 0.87 W (at 25 oC), and the output voltage and current were stably maintained at 2.28 V and 0.38 A, respectively.
中文摘要 ………………………………………………………………I
英文摘要 ………………………………………………………………III
目錄 …………………………………………………………………VI
圖目錄 …………………………………………………………………X
表目錄 ………………………………………………………………XII
符號說明 ……………………………………………………………XIII

第一章 序論 …………………………………………………………1
1-1 前言 ………………………………………………………………1
1-2 研究目的與反應器演化流程 ……………………………………3

第二章 文獻回顧 ………………………………………………………6
2-1 微生物產氫研究 ……………………………………………6
2-2 產氫微生物 ……………………………………………………7
2-3 暗醱酵產氫 …………………………………………………11
2-3-1 暗醱酵生物產氫代謝途徑 ………………………………11
2-3-2 暗醱酵生物產氫反應機制 ………………………………13
2-4 Clostridia ……………………………………………………15
2-4-1 Clostridia的特徵 …………………………………………15
2-4-2 Clostridium的產氫能力 …………………………………17
2-5 Klebsiella ……………………………………………………18
2-5-1 兼性厭氧菌Klebsiella的特徵 …………………………18
2-5-2 兼性厭氧菌Klebsiella的產氫能力 ……………………19
2-6 固定化細胞技術 ……………………………………………22
2-6-1 固定化細胞的定義 ………………………………………22
2-6-2 固定化細胞的方法與分類 ………………………………22
2-6-3 固定化細胞擔體比較 ……………………………………24
2-6-3-1 天然固定化擔體 ……………………………………24
2-6-3-2 合成擔體 ……………………………………………26
2-6-4 固定化細胞應用於生物反應器特性 ……………………29
2-7 生物產氫動力學 ……………………………………………31
2-8 生物產氫反應器 ……………………………………………33
2-8-1 光生物反應器 ……………………………………………33
2-8-2 暗醱酵生物反應器 ………………………………………36

第三章 批次醱酵產氫 ………………………………………………61
摘要 …………………………………………………………………61
3-1 研究前言 ……………………………………………………62
3-2 研究方法與步驟 ……………………………………………63
3-2-1 產氫菌群 ………………………………………………63
3-2-2 產氫菌群固定化細胞製備 ……………………………64
3-2-3 基質配方 ………………………………………………64
3-2-4 產氫菌群固定化細胞批次產氫操作步驟 ……………67
3-2-5 分析方法 ………………………………………………68
3-3 結果與討論 …………………………………………………68
3-3-1 未經馴養之矽膠固定化細胞產氫表現 ………………68
3-3-2 馴養後之矽膠固定化細胞產氫表現 …………………69
3-3-3 碳源與基質濃度對矽膠固定化細胞產氫之影響 ……71
3-3-4 固定化細胞產氫動力學 ………………………………73
3-3-5 溫度對產氫之影響 ……………………………………75
3-3-6 不同碳源與濃度下之液相
可溶性代謝物與糖利用率變化情形 …………………75
3-3-7 六碳糖/五碳糖之菌相分析 ……………………………78
3-4 結論 …………………………………………………………79

第四章 上升管式流體化床醱酵產氫 ………………………………83
摘要 …………………………………………………………………83
4-1 研究前言 ……………………………………………………84
4-2 研究方法與步驟 ……………………………………………85
4-2-1 產氫活性污泥 …………………………………………85
4-2-2 固定化細胞製備 ………………………………………85
4-2-3 基質配方 ………………………………………………85
4-2-4 分析方法 ………………………………………………85
4-2-5 DTFBR啟動及生物產氫操作 …………………………86
4-3 結果與討論 …………………………………………………88
4-3-1 DTFBR反應器特性 ……………………………………88
4-3-2 熱處理對產氫之影響 …………………………………..90
4-3-3 生物產氫再現性 ………………………………………91
4-3-4 蔗糖濃度與HRT對產氫之影響 ……………………….94
4-3-5 DTFBR中可溶性代謝物與糖利用率變化情形 ……….98
4-4 結論 …………………………………………………………100

第五章 暗醱酵產氫與燃料電池之即時發電系統 …………………101
摘要 …………………………………………………………………101
5-1 研究前言 ……………………………………………………102
5-2 研究方法與步驟 …………………………………………103
5-2-1 產氫活性污泥 …………………………………………103
5-2-2 固定化細胞製備 ………………………………………103
5-2-3 基質配方 ………………………………………………103
5-2-4 分析方法 ………………………………………………103
5-2-5 CSABR啟動及生物產氫操作 ……………………104
5-2-6 質子交換膜燃料電池(PEMFC) ………………………104
5-3 結果與討論 …………………………………………………106
5-3-1 CSABR生物產氫系統 ………………………………106
5-3-2 PEMFC發電 …………………………………………109
5-3-3 生物產氫發電可行性 …………………………………110
5-4 結論 ………………………………………………………115
第六章 總結與未來展望 ……………………………………………117
6-1 總結 ………………………………………………………117
6-2 未來展望 ……………………………………………………120

參考文獻 ……………………………………………………………123
附錄一 個人簡歷(Curriculum Vitae) ………………..…………………i
Andrews JF. 1968. A mathematical model for the continuous culyure of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10: 707-723.

APHA. 1995. Standard methods for the examination of water and wastewater. 19th edition, American Public Health Association, New York.

Bagai R, Madamwar D. 1998. Prolonged evolution of photohydrogen by intermittent supply of nitrogen using a combined system of Phormidium valderianum, Halobacterium halobium and Escherichia coli. Int J Hydrogen Energy 23: 545-550.

Bailey JE, Ollis DF. 1986. Biochemical engineering fundamentals. 2nd edn. McGraw-Hill, New York.

Benemann J. 1970. Nitrogen fixation by azotobacter vinelandii. Ph. D. Dissertation, Department of Biochemistry, University of California, Berkeley.

Benemann J, Berenson J, Kaplan N, Kamen M. 1973. Hydrogen evolution by a Chloroplast-Ferredoxin-Hydrogenase system. Proc Nat Acad Sci USA 70: 2317-2320.

Benemann J, Weare N. 1974. Hydrogen evolution by nitrogen-fixing anabaena cylindrical cultures. Science 184: 1917-1918.

Benemann JR. 1997. Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22: 979-987.

Brock TD, Madigan MT, Martiko JM, Parker J. 1994. Biology of Microorganisms, 7th ed. New Jersey, Englewood Cliffs: Prentice Hall. Inc.

Brosseau JD, Zajic JE. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. J Chem Tech Biotechnol 32: 496-502.

Bryson MF, Drake HL. 1988. Energy-dependent transport of nickel by Clostridium pasteurianum. J Bacteriol 170(1): 234-238.
Cai ML, Liu JX, Wei YS. 2004. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ Sci Technol 38: 3195-3202.

Cato EP, Moore WL, Finegold. 1986. Genus Clostridium Prazmowski 1880, 23AL. In: P.H.A. SNEATH, N.S. MAIR, M.E. SHARPE and J.G. HOLT (eds.), Bergey’s Manual of Systematic Bacteriology, first edition, vol. 2, The Williams & Wilkins Co., Baltimore: 1141-1200.

Chang CN, Chiu CC, Ho CP, Ma YS. 2000. Recovering domestic wastewater by submerged membrane bioreactor. 25th Conference on Wastewater Treatment, Taiwan : 145-150.

Chang FY, Lin CY. 2004. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy 29: 33-39.

Chang JS, Chou C, Chen SY. 2001. Decolorization of azo dye with immobilized cells of Pseudomonas luteola. Process Biochem 36: 757-763.

Chang JS, Lee KS, Lin PJ. 2002. Biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy 27: 1167-1174.

Chen CC, Lin CY, Chang JS. 2001. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57: 56-64.

Chen CC, Lin CY. 2001. Start-up of anaerobic hydrogen producing reactors seeded with sewage sludge. Acta Biotechnol 21(4): 371-379.

Chen CC, Lin CY, Lin MC. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58: 224-228.

Chen KC, Lin YF. 1994. Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme Microb Technol 16: 79-83.

Chen WM, Tseng ZJ, Lee KS, Chang JS. 2005. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Inte J Hydrog Energy 30: 1063-1070.

Chen X, Sun Y, Xiu ZL, Li XH, Zhang D. 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrogen Energy 31: 539-549.
Chin HL, Chen ZS, Chou CP. 2003. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 19: 383-388.

Claassen PAM, van Groenestijn JW, Janssen AJH, van Niel EWJ, Wijffels RH. 2000. Feasibility of biological hydrogen production from biomass for utilization in fuel cells.

Claassen PAM, de Vrije T. 2005. Integrated bioprocess for hydrogen production from biomass: Hyvolution. Proceedings International Hydrogen Energy Congress and Exhibition IHEC, Istanbul, Turkey, 13-15 July. (in CD-ROM collection)

Crabtree WG, Dresselhaus MS, Buchanan MV. 2004. The hydrogen economy. Physics Today December: 39-44.

Das D, Veziroglu TN. 2001. Hydrogen production by biological process: a survey of literature. Int J Hydrogen Energy 26: 13-28.

de Vos MHP, Ley JD. 1990. H2 production from chemostat fermentation of glucose by Clostridium butyricum and Clostridium pasteurianum in ammonium and phosphate limitation. Biotechnol Lett 12(10): 731-736.

Endo G., Noike T, Matsumoto J. 1982. Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc Soc Civ Engrs 325: 61-68 (In Japanese).

Evvyernie D, Yamazaki S, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K. 2000. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. J Biosci Bioeng 89(6): 596-601.

Ezeji TC, Qureshi N, Blaschek HP. 2005. Continuous butanol fermentation and feed starch retrogradation: Butanol fermentation sustainability using Clostridium Beijerinckii Ba101. J Biotechnol 115: 179-181.

Fan LS. 1989. Gas-Liquid-Solid Fluidization Engineering. Butterworth Publishers: Columbus, OH.

Fang HHP, Zhang T, Liu H. 2002a. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 58: 112.

Fang HHP, Liu H, Zhang T. 2002b. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78:44-52.

Fang HHP, Li CL, Zhang T. 2006. Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31:683-692.

Fujita M, Ike M, Hashimoto S. 1991. Feasibility of wastewater tratment using genetically engineered microorganisms. Water Res 25: 979-984.

Gottschalk G. 1986. Bacterial Metabolism. 2nd ed. New York: Springer-Verlag.

Guwy AJ, Hawkes FR, Hawkes DL, Rozzi AG. 1997. Hydrogen production in a high rate fluidized bed anaerobic digester. Wat Res 31(6): 1291-1298.

Hashimoto S, Furukawa K. 1987. Immobilization on activated sludge by PVA-broic acid mrthod. Biotechnol Bioeng 30: 52-59.

Hawkes FR, Dinsdale R, Hawkes DL, Hussy I. 2002. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int J Hydrogen Energy 27: 1339-1347.

Horiuchi JI, Shimizu T, Tada K, Kanno T, Kobayashi M. 2002. Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82: 209-213.

Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL. 2004. Anaerobic sludge granulation. Water Res 38(6): 1376-1389.

Hwu CS, van Lier JB, Lettinga G. 1998. Physicochemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids. Process Biochem 33(1): 75-81.

Ikuta Y, Akano T, Shioji N, Maeda I. 1998. Biohydrogen production by photosynthetic microorganisms. In BioHydrogen. Zaborsky, OR Ed., Plenum Press: New York, 319-328.

Jeison D, Chamy R. 1999. Comparison of the behavior of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment. Water Sci Technol 40: 91-97.
Jones DT, Woods DR. 1986. Acetone-butanol fermentation revisited. Microbiol Rev 50: 484-524.

Kataoka N, Miya A, Kiriyama K. 1997. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36: 41-47.

Kato S, Shin H, Zong JC, Masaharu I, Yasuo I. 2004. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiology Ecology 51: 133-142.

Kim JO, Kim YH, Ryu JY, Song BK, Kim IH, Yeom SH. 2005. Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation. Process Biochemistry 40: 1331-1337.

Kotsopoulos TA, Raymond JZ, Angelidaki I. 2006. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 ℃). Biotechnol Bioeng (online available).

Kumar A, Jain SR, Sharma CB, Joshi AP, Kalia VC. 1995. Increased hydrogen production by immobilized microorganisms. World J Microbiol Biotechnol 11: 156-159.

Kumar N, Das D. 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35(6): 589-593.

Kumar N, Das D. 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29: 280-287.

Kyazze G, Martinez-Perez N, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ, Hawkes DL. 2006. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng 93(5): 971-979.

Lay JJ, Lee YJ, Noike T. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33: 2579-2586.

Lay JJ. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68: 269-278.

Lay JJ. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74: 280-287.

Lazar A. 1991. Immobilization of animal cells in fixed bed bioreactors. Biotechnol Advances 9(3): 411-424.

Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS. 2003. H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol Lett 25: 133-138.

Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS. 2004a. Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb Technol 35: 605-612.

Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ, Chang JS. 2004b. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87(5): 648-657.

Lee KS, Lin PJ, Chang JS. 2006. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int J Hydrogen Energy 31: 465-472.

Lee YJ, Miyahara T, Noike T. 2002. Effect of pH on microbial hydrogen fermentation. J Chem Technol Biotechnol 77: 694-698.

Lettinga G, Van Velsen AFM, Hobma SW, De Zeuw W, Klapwijk A. 1980. Use of the upflow sludge blanket (USB) reactor concept for biological waste water treatment, especially for anaerobic treatment. Biotechnol Bioeng 22: 699-734.

Lettinga G. 1995. Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3-28.

Lettinga G. 1996. Sustainable integrated biological wastewater treatment. Water Sci Technol 33(3): 85-98.

Levin DB, Pitt L, Love M. 2004. Biohydrogen production: prospects and limitations to pratical application. Int J Hydrogen Energy 29: 173-185.

Liang TM, Cheng SS, Wu KL. 2002. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int J Hydrogen Energy 27: 1157-1165.
Liang TM. 2003. Application of membrane separation on anaerobic hydrogen-producing processes. Ph. D. dissertation. National Cheng Kung University. ROC.

Lin CN, Wu SY, Chang JS. 2006. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. Int J Hydrogen Energy (in press)

Lin CY, Chang RC. 1999. Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotechnol 74: 498-500.

Lin CY, Lay CH. 2004. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Inter J Hydrog Energy 29: 41-45.

Lin CY, Chang RC. 2004. Fermentative hydrogen production at ambient temperature. Inter J Hydrog Energy 29(7): 715-720.

Lin CY, Lay CH. 2005. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 30: 285-292.

Lin CY, Lee CY. Tseng IH, Shiao IZ. 2006. Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora. Process Biochemistry 41: 915-919.

Liu H, Fang HHP. 2002. Hydrogen production from wastewater by acidogenic granular sludge. Water Sci Technol 47: 153-158.

Logan BE, Oh SE, Kim IS, van Ginkel S. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36(11): 2530-2535.

Malina JF, Pohland JFG. 1992. Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Pub Co., USA.

Michael TM, John MM, Jack P. 2003. Brock Biology of Microorganisms. Prentice Hall. Inc.

Minnan L, Jinli H, Xiaobin W, Huijuan X, Jinzao C, Chuannan L, Fengzhang Z, Liangshu X. 2005. Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring. Research in Microbiology 156: 76-81.
Miyake J. 1998. The science of biohydrogen: An energetic view. In BioHydrogen. Zaborsky, OR Ed., Plenum Press: New York, 7-18.

Mizuno O, Dinsdale R, Hawkes FR, Kawkas DL, Noike T. 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Biotechnol Bioeng 73(1): 59-65.

Morimoto M, Atsuko M, Atif AAY, Ngan MA, Razi AF, Iyuke SE, Bakir AM. 2005. Biological production of hydrogen from glucose by natural anaerobic microflora. Inter J Hydrog Energy 29: 709-713.

Nakada E, Niahikata S, Asada Y, Miyake J. 1999. Photosynthetic bacterial hydrogen production combined with a fuel cell. Int J Hydrogen Energy 24: 1053-1057.

Nakashimada Y, Rachman MA, Kakizono T, Nishio N. 2002. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states. Int J Hydrog Energy 27: 1399-1405.

Nandi R, Sengupta S. 1998. Microbial production of hydrogen - an overview. Crit Rev Microbiol 24: 61-84.

Oh SE, Ginkel SV, Logan BE. 2003. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37: 5186-5190.

Oh SE, Lyer P, Bruns MA, Logan BE. 2004. Biological hydrogen production using membrane bioreactor, Biotechnol Bioeng 87(11): 119-127.

Oh YK, Kim SH, Kim MS, Park S. 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol Bioeng 88(6): 690-698.

Palazzi E, Fabino B, Perego P. 2000. Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng 22: 205-13.

Rachman MA, Nakashimada Y, Kakizono T, Nishio N. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49: 450-454.
Reith JH, Wijffels RH, Barten H. 2003. Bio-methane & Bio-hydrogen. Energy research Centre of the Netherlands ECN.

Shin HS, Youn JH, Kim SH. 2004. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 29: 1355-1363.

Sleat R, Mah R, Robinson R. 1984. Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov. Appl. Environ. Microbiol 48: 88-93.

Solomon BO, Zeng AP, Biebl H, Schlieker H, Posten C, Deckwer WD. 1995. Comparison of the energentic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. Biotechnology 39: 107-117.

Stackebrandt E, Rainey FA. 1997. The Clostridia : Molecular biology and pathogenesis. In the Clostridia : molecular biology and pathogenesis. Rood JI, McClane BA, Songer JG, Titball RW. (eds.): Academic Press: 3-19.

Stephenson TS, Judd BJ, Brindle K. 2000. Membrane bioreactor for wastewater treatment. 1st ed., IWA, London.

Steven W, Ginkel V, Logan B. 2005. Increased biological hydrogen production with reduced organic loading. Int J Hydrogen Energy 39: 3819-3826.

Straus DC. 1986. Production of an extracellular toxic complex by various strains of Klebsiella pneumoniae. American Society for Microbiology 55: 44-48.

Sumino T, Nakamura H, Mori N, Kawaguchi Y, Tada M. 1992. Immobilization of nitrifying bacteria in porous pellets of urethane gel for removal of ammonium nitrogen from wastewater. Appl Microbiol Biotechnol 36: 556-560.

Taguchi F, Mizukami N, Hasegawa K, Saito-Taki T. 1994. Microbial conversion of arabinose and xylose to hydrogen by a newly isolated Clostridium sp. No. 2. Can J Microbiol 40: 228-233.

Taguchi F, Mizukami N, Yamada K, Hasegawa K, Saito-Taki T. 1995. Direct conversion of cellulosic materials to hydrogen by Clostridium sp. strain No. 2. Enzyme Microbiol Biotechnol 17: 147-150.

Taguchi F, Hasagawa K, Saito-Taki T, Hara K. 1996. Simultaneous production of xylanase and hydrogen using xylan in batch culture of Clostridium sp. strain X53. J Ferment Bioeng 81: 178-180.

Takahashi P. 1971. Tunable laser irradiation of escherichia coli. Ph.D. Dissertation, Department of Chemical Engineering, Louisiana State University.

Takeshima M, Kimata T, Mori N, Emori H. 1993. Pegasus, an innovative high-rate BOD and nitrogen removal process for municipal wastewater. 66th WEF Annual Conference.

Tanaka K, Tada M, Kimata T, Harada S, Fujii Y, Mizuguchi T, Mori N, Emori H. 1991. Development of new nitrogen removal systems using nitrifying bacteria immobilized in synthetic resin pellets. Wat Sci Tech 23: 681-690.

Tanisho S, Ishiwata Y. 1994. Continuous hydrogen production from molasses by the bacterium Enterobacter Aerogenes. Int J Hydrogen Energy 19: 807-812.

Tanisho S, Ishiwata Y. 1995. Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. Int J Hydrog Energy 20(7): 541-545.

Tanisho S, Kuromoto M, Kadokura N. 1998. Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy 23(7): 559-563.

Tardieu E, Grasmick A, Geaugey V, Manem J. 1998. Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment. J Membrane Sci 147: 1-12.

Thomas D, Michael T, John M, Jack P. 1994. Biology of Microorganism. Prentice Hall, Auflage: 77-80.

Turner John A. 2004. Sustainable hydrogen production. Science 305: 972-974.
Ueda T, Hata K. 1999. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. Wat Res 33: 2888-2892.

Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M. 1995. Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79(4): 395-397.

Ueno Y, Otsuka S, Morimoto M. 1996. Hydrogen production from industrial wastewater by anaerobic microflora in chemostate culture. J Ferment Bioeng 82(2): 194-197.

Ueno Y, Haruta S, Ishii M, Igarashi Y. 2001a. Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. Biosci and Bioeng 92: 397-400.

Ueno Y, Haruta S, Ishii M, Igarashi Y. 2001b. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57(11): 555-562.

van Dyke MI, McCarthy AJ. 2002. Molecular biological detection and characterization of clostridium populations in municipal landfill sites. Appl Environ Microbiol 68: 2049-2053.

van Ginkel S, Sung S, Lay JJ. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35: 4726-4730.

van Niel EWJ, Claassen PAM, Stams AJM. 2002a. Substrate and product inhibition of hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81: 255-262.

van Niel EWJ, Budde MAW, de HaasGG, van der Wal FJ, Claassen PAM, Stams AJM. 2002b Distinctive propertiesof high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfiii. Int J Hydrog Energy 27: 1391-1398.

Vavilin VA, Rytow SV, Lokshina LY. 1995. Modelling hydrogen partial pressure change as a result of competition between the butyricand propionicgroups of acidogenicbacteria. Bioresour Technol 54: 171-177.

Venkatasubramanian K, Karkare SB. 1983. Immobilized cells and organelles. B. Mattiasson, CRC Press Ins., FL 2: 133.
Vorlop KD, Muscat A, Beyersdorff J. 1992. Entrapment of microbial cells within polyurethane hydrogel beads with the advantage of low toxicity. Biotech Techn 6: 483-488.

Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS. 2003. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol 102: 83-92.

Willke B, Willker T, Vorlop KD. 1994. Poly (Carbamoylsulphonate) as a matrix for whole cell immobilization-biological characterization. Biotech Techn 8: 623-626.

Wu SY, Lin CN, Chang JS, Lee KS, Lin PJ. 2002. Microbial hydrogen production withimmobilized sewage sludge. Biotechnol Prog 18: 921-926.

Wu SY, Lin CN, Chang JS. 2003. Hydrogen production with immobilized sewage sludge in three-phase fluidized-bed bioreactors. Biotechno Prog 19: 828-832.

Wu SY, Lin CN, Chang JS, Chang JS. 2005. Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer. Int J Hydrogen Energy 30: 1375-1381.

Wu SY, Hung CH, Lin CN, Chen HW, Lee AS, Chang JS. 2006. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng 93(5): 934-946.

Yan RT, Zhu CX, Golemboski C, Chen JS. 1988. Expression of solvent-forming enzymes and onset of solvent production in batch culture of Clostridium butyricum. Appl Environ Microbiol 54: 642-648.

Yokoi H, Ohkawara T, Hirose J, Hayashi S, Takasaki Y. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 80: 571-574.

Yokoi H, Maeda Y, Hirose J, Hayashi S, Takasaki Y. 1997a. H2 Production by immobilized cells of Clostridium butyricum on porous glass beads. Biotechnol Tech 11: 136-143.

Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y. 1997b. Hydrogen production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 83: 481-484.

Yokoi H, Aratake T, Hirose J, Hayashi S, Takasaki Y. 2001a. Simultaneous production of hydrogen and bioflocculant by Enterobacter sp. BY-29. World J Microbiol Biotechnol 17(6): 609-613.

Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. 2001b. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91: 58-63.

Yokoi H, Maki R, Hirose J, Hayashi S. 2002. Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenerg 22: 389-395.

Yu HQ, Tay JH, Fang HHP. 2001. The roles of calcium in sludge granulation during UASB reactor start-up. Wat Res 35: 1052-1060.

Yu HQ, Zhu ZH, Hu WR, Zhang HS. 2002. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy 27: 1359-1365.

Zaborsky O, Benemann J, Matsunaga, Miyake J, Pietro AS. 1998. Biohydrogen. Plenum Press, New York and London.

Zhang T, Liu H, Fang HHP. 2003. Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manage 69: 149-156.

Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J. 1999. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int J Hydrogen Energy 24: 305-310.

Zhu Y, Yang ST. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology 110: 143-157.

白明德,(1999) "厭氧生物產氫機制與程序操作策略研究",國立成功大學環境工程碩士論文。


吳文騰,(2005) "生質能源專輯",化工技術,六月號,第13卷第6期。

吳石乙、白景成、林祺能、陳政群,(2004) "生質產氫之三相流反應器介紹",化工技術,十二月號,第12卷第12期,第129-146頁。

吳美惠,張芳賓,朱昱學,(1996) "固定化微生物廢水處理技術評估",工業污染防治,第59期,第81-110頁。

李宏台,(2004) "生質能源利用展望",化工技術,十月號,第12卷第10期,第 99-109頁。

李國興,(2004) "以顆粒污泥程序進行高速厭氧醱酵產氫",逢甲大學化學工程博士論文。

林祺能,(2002) "固定化細胞產氫",逢甲大學化學工程碩士論文。

范姜楷,(2002) "以CSTR合併中空纖維微過濾膜組進行厭氣污泥連續式產氫醱酵",逢甲大學化學工程碩士論文。

張仕旻,(2002) "利用薄膜反應器於高溫厭氧產氫生物程序之研究",國立成功大學環境工程碩士論文。

張逢源、鐘宛亭、林秋裕,(2005) "污水污泥菌種產氫活性之探討",第三十屆廢水處理技術研討會。

張嘉修、李國興、林屏杰,(2002) "生物技術在廢水資源化之利用",環保月刊,八月號,第2卷第8期,第150-159頁。

許景富,(2003) "Clostridium butylicum & Clostridium thermocellum分解纖維素產氫之特性分析",高雄第一科技大學環境與安全衛生工程碩士論文。

陳欣微,(2005) "完全混合厭氧發酵產氫系統在不同操作條件下之菌群結構分析",國立中興大學環境工程碩士論文。

陳國誠,(1992) "微生物酵素工程學",藝軒出版社。

陳國誠,(2000) "生物固定化技術與產業應用",茂昌圖書有限公司。

曾姿錦、陳文明、張嘉修,(2004) "以兼性厭氧菌klebsiella sp.進行醱酵產氫",第29屆廢水處理技術研討會。

蔡文城,(1984) "應用臨床微生物診斷學",第475頁。

蔡國均、廖學賢,(1997) "造紙廢水兩段式生物處理實廠操作經驗談",化工技術,六月號,第5卷第6期,第 162-170頁。

鄭幸雄、白明德、趙禹杰,(2003) "厭氧產氫菌分解高分子碳水化合物及peptone之產氫機制",第二十八屆廢水處理技術研討會論文集。

鄭幸雄、張憲彰、梁德明、白明德、張仕旻、吳坤龍、蕭嘉瑢、李學霖、黃良銘、王永福,(2005) "複合基質生物產氫程序控制之技術開發",化工技術,六月號,第13卷第6期,第 149-168頁。

鄭如琇,(2006) "以微生物組成探討厭氧醱酵系統之產氫效能",國立中興大學環境工程碩士論文。

盧文章、林昀輝,(2004) "生物產氫的發展",太陽能及新能源學刊,第9卷第1期,第48-52頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳美惠,張芳賓,朱昱學,(1996) "固定化微生物廢水處理技術評估",工業污染防治,第59期,第81-110頁。
2. 吳石乙、白景成、林祺能、陳政群,(2004) "生質產氫之三相流反應器介紹",化工技術,十二月號,第12卷第12期,第129-146頁。
3. 李宏台,(2004) "生質能源利用展望",化工技術,十月號,第12卷第10期,第 99-109頁。
4. 張嘉修、李國興、林屏杰,(2002) "生物技術在廢水資源化之利用",環保月刊,八月號,第2卷第8期,第150-159頁。
5. 鄭幸雄、張憲彰、梁德明、白明德、張仕旻、吳坤龍、蕭嘉瑢、李學霖、黃良銘、王永福,(2005) "複合基質生物產氫程序控制之技術開發",化工技術,六月號,第13卷第6期,第 149-168頁。
6. 盧文章、林昀輝,(2004) "生物產氫的發展",太陽能及新能源學刊,第9卷第1期,第48-52頁。
7. 尚憶薇(2004)。美國運動與休閒產業及其人力資源介紹。中華體育季刊18(4), 24-28。
8. 姜慧嵐(1994)。「淺談體適能中心/俱樂部的規劃」,中華體育,8(1),頁55-57。
9. 高俊雄(1995)。台北市健康體適能俱樂部經營管理型態初探,大專體育, 22, 39-53。
10. 高俊雄(1997)。臺灣地區運動服務業之發展概況。國民體育季刊,26(3),頁 135-143。
11. 郭天祥、張家銘、徐欽賢(2005)。運動俱樂部組織效能量表之建構效度與建構 信度探討—以北區運動俱樂部為例。體育學報,38(1),頁 103-116。
12. 彭淑美(1993)。營利性運動休閒健身設施之經營管理,國民體育季刊,22(2), 89-95。
13. 程紹同(1997)。國內運動休閒與體適能企業之概況介紹及經營策類分析。桃縣文教,復刊號, 29-36。