跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白景成
研究生(外文):Jing-cheng Bai
論文名稱:循環式顆粒床除塵之研究
論文名稱(外文):Dedusting of Circulating Granular Bed Filters
指導教授:吳石乙
指導教授(外文):Shu-yii Wu
學位類別:博士
校院名稱:逢甲大學
系所名稱:化學工程學所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:214
中文關鍵詞:顆粒床除塵效率壓力降床質粒徑檔板角度床質質量流率床質磨損
外文關鍵詞:granular bed filterdust collection efficiencyparticle sizesolids mass flow ratelouver anglebed material attrition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先針對循環顆粒床中,上昇管管口與多管式循環顆粒床質分散板進行探討,以瞭解不同上昇管管口、多管式床質分散板與幾何設計對顆粒床操作之影響。第二部份則著重於二維循環式顆粒床在常溫除塵過程中,不同操作參數如床質粒徑、床質質量流率與檔板角度對除塵效率暨床壓降的影響。第三部份研究,主要由第一部份與第二部份所得研究結論與操作方法,設計出循環式顆粒床裝置,並藉由不同操作參數與不同氣固分離器,進行除塵效率與壓力降之比較。
在上昇管管口與多管式顆粒床之床質分散板研究結果顯示,在相同操作氣速下,上昇管管口高度與直徑所組成的外觀比,如果越大則上昇管管口的操作壽命也跟著增長。當床質初始平均粒徑dp0 = 420 mm時,有較高的操作壽命。儲存槽內多孔分散板各孔口總平均的床質質量流率,並不會隨床質在儲槽內的高度降低而有明顯改變。在相同孔徑下,不同分散板構型與孔口數,對各孔口床質質量流率的影響則不明顯。旋風式氣固分離器裝置,使顆粒床有較高的除塵效率與壓力降。這是因為旋風式氣固分離器,捕集較多的磨損顆粒,使床質空隙度較為緊密。
在二維循環式顆粒床除塵研究中發現,二維循環式顆粒床床質顆粒,在上昇式快速流化床管內受高速氣體衝擊,導致顆粒相互碰撞,造成床質磨損現象。顆粒床檔板角度各為300及200時,床質質量流率分別為21.50 ± 0.11 g/s 與 30.51 ± 0.57 g/s,有較高的除塵效率。在相同床質質量流率與初始床質粒徑操作條件下,顆粒床檔板角度300時,有最高的除塵效率。床質質量流率越慢時,顆粒床內的壓降也跟著增加。
由循環式顆粒床除塵實驗的數據顯示,除塵效率增加時顆粒床內壓力降也會隨著增加,當初始床質平均粒徑為dp0 = 795mm,床質質量流率為B = 17.08 ± 0.48 g/s時,並且使用旋風式氣固分離器有最高的除塵效率(99.56%) 與最低的平均粉塵出口濃度(Cout = 106.72 ppmw)。床質空隙度與粉塵結塊對於循環式顆粒床除塵效率及壓力降的影響扮演極為重要的角色。循環式顆粒床的除塵效率,可藉氣固分離器裝置對於床質磨損顆粒捕集的設計來改善,使顆粒床有較高的除塵效率。
最後,期以本研究所得之成果,提供多管式循環顆粒床除塵設計與操作的參考,以提高燃煤發電效率、減少設備費用、減少能源使用量及環境污染。
The first object of the investigation elucidates the apparatus of the riser of nozzle-type inlet and the multi-channel distributor in the granular bed filter. The design of the bed material inlet system in the circulating granular fluidized bed filter and the relative parameters were discussed such as the different inner diameters of nozzle-type inlet, the heights of nozzle-type inlet, particle sizes and solids mass flow rates. The different multi-channel distributors were analyzed to find suitable design for design of multi-channel granular bed filter applications. Then, a two-dimensional Circulating Granular Bed Filter (CGBF) was setup for the investigation of the dedusting of flue gas. The dust collection efficiency and pressure drop were analyzed to determine suitable operating conditions. Eventually, a novel circulating granular bed filter with conical louver plates (CGBF-CLPs) was designed to remove dust particulates.
The experimental results showed that the different nozzle-type inlet influenced the solids mass flow rates in the same gas velocity. The riser of fast-fluidized bed had longer operation time with an increased of the aspect ratio of the inlet height and diameter. In addition, when the initial average collector particle size was 420 mm, the nozzle-type inlet had much longer operation life. In the investigation of multi-channel distributors, the results showed that the different numbers of hole did not affect the bed material flow rates in the same holes diameter. The height of bed material in the hopper did not affect the bed material flow rates too.
In the two-dimensional Circulating Granular Bed Filter (CGBF), the experimental results showed a higher dust collection efficiency occurs when the solids mass flow rates were 21.50 ± 0.11 g/s and 30.51 ± 0.57 g/s at louver angles of 300 and 200 respectively. One of the best dust collection efficiency was found at a louver angle of 300 in the same solids mass flow rate and initial average collector particle size.
In the circulating granular bed filter with conical louver plates (CGBF-CLPs), experimental results showed that the highest dust collection efficiency and lowest dust concentration were 99.59% and 106.72 ppmw respectively when the solid mass flow rate was 17.08 ± 0.48 g/s and initial average collector particle size was 795 mm with the cyclone type separator. Bed voidage and dust cake played important roles in the effects of dust collection efficiency and pressure drop. The dust collection efficiency of the CGBF-CLPs system can be improved by paying attention to the separator which collects the fines from the attrition of collector particles.
The data were analyzed to build-up the model of multi-channel granular bed filter for commercial scale applications in the future. A granular bed filter of suitable design will increase the fuel to energy efficiency and decrease the cost of the equipments, the waste of energy resources, and environmental pollution.
摘要……………………………………………………………….....I
Abstract…………………………………………………………...III
目錄…………………………………………………………………….V
圖目錄………………………………………………………………...X
表目錄……………………………………………………………….XVI
符號說明………………………………………………………….XVIII
第一章 緒論……………………………………………………………1
1-1 高溫燃煤系統中除塵技術與設備…………………………….1
1-2 顆粒床氣體淨化技術…………………………….............4
1-3 研究動機與目的……………………………………………….7
1-4 研究架構與內容……………………………………………….7
第二章 原理與文獻回顧……………………………………………..10
2-1 顆粒床種類…………………………………………………….10
2-1-1 固定式顆粒床………………………………………….10
2-1-2 移動式顆粒床………………………………………….12
2-1-3 循環式顆粒床………………………………………….29
2-2 顆粒床過濾機構……………………………………………….31
2-2-1 擴散…………………………………………………….32
2-2-2 阻攔…………………………………………………….33
2-2-3 慣性衝擊……………………………………………….34
2-2-4 重力沉降……………………………………………….35
2-3 除塵效率與壓力降…………………………………………….36
2-3-1 顆粒床除塵效率……………………………………….36
2-3-2 顆粒床壓力降………………………………………….46
2-4 顆粒間作用力………………………………………………….49
2-5 顆粒床質磨損………………………………………………….49
2-5-1 床質物性對磨損之影響……………………………….51
2-5-2 操作條件對磨損之影響……………………………….51
2-6 床質與粉塵粒徑分類………………………………………….53
2-7 循環式顆粒床除塵系統……………………………………….56
2-7-1 床質顆粒儲存槽分散板……………………………….56
2-7-2 上昇管粉體輸送……………………………………….58
2-7-3 氣固分離器…………………………………………….63
第三章 上昇管管口及床質儲存槽分散板之探討…………………..65
3-1上昇管管口之探討……………………………………………..65
3-1-1 前言…………………………………………………....65
3-1-2 實驗設備與方法……………………………………....66
3-1-2-1 實驗設備………………………………………66
3-1-2-2 實驗流程與操作條件……………………....69
3-1-3 結果與討論…………………………………………....70
3-1-3-1 床質粒徑對床質質量流率之影響…………….70
3-1-3-2 錐形管口高度對床質質量流率之影響……….71
3-1-3-3 上昇管管口直徑對床質質量流率之影響…….73
3-1-3-4 上昇管管口操作可容許時間之比較………….74
3-1-3-5 上昇管管口操作可容許時間之預測經驗公式.76
3-1-4 小結…………………………………………………....77
3-2 床質儲存槽床質分散板之探討……………………………….78
3-2-1 前言………………………………………………………78
3-2-2 實驗設備與方法……………………………………….78
3-2-2-1 實驗設備…………………………………….78
3-2-2-2 實驗流程與操作條件……………………….81
3-2-3 結果與討論…………………………………………….81
3-2-3-1 儲料高度對床質質量流率之影響………….81
3-2-3-2 分散板構型對床質質量流率之影響……….82
3-2-3-3 孔數對床質質量流率之影響……………….83
3-2-4 小結…………………………………………………….84
第四章 二維循環式顆粒床之除塵與壓力降………………………..85
4-1 前言…………………………………………………………….85
4-2 實驗設備與方法……………………………………………….85
4-2-1 實驗設備……………………………………………….85
4-2-2 實驗流程與操作條件………………………………….94
4-2-2-1 粉塵氣體製造……………………………….94
4-2-2-2 床質質量流率量測………………………….95
4-2-2-3 粉塵收集與壓力偵測……………………….95
4-3 結果與討論…………………………………………………….97
4-3-1 粉塵燃氣製造………………………………………….97
4-3-1-1 操作氣速對粉塵濃度之影響……………….98
4-3-1-2 矽砂與粉塵混合比例對粉塵濃度之影響….99
4-3-1-3 最佳操作時間之探討………………………100
4-3-2 床質質量流率控制……………………………………104
4-3-2-1 床質粒徑對床質質量流率之影響…………104
4-3-2-2 檔板角度對床質質量流率之影響…………106
4-3-3 除塵效率………………………………………………108
4-3-3-1 床質磨損對除塵效率之影響………………108
4-3-3-2 床質質量流率對除塵效率之影響…………113
4-3-3-3 檔板角度對除塵效率之影響………………114
4-3-3-4 床質粒徑對除塵效率之影響………………117
4-3-4 壓力降…………………………………………………119
4-3-4-1 二維循環式顆粒床壓力分析………………119
4-3-4-2 床質質量流率對壓力降之影響……………120
4-3-4-3 檔板角度對壓力降之影響…………………122
4-3-4-4 床質粒徑對壓力降之影響…………………123
4-4 小結…………………………………………………………..125
第五章 循環式顆粒床除塵與壓力降……………………………….127
5-1 前言…………………………………………………………..127
5-2 實驗設備與方法……………………………………………..127
5-2-1 實驗設備………………………………………………127
5-2-2 實驗流程與操作條件…………………………………135
5-2-2-1 粉塵燃氣製造………………………………135
5-2-2-2 床質質量流率………………………………135
5-2-2-3 粉塵收集與壓力偵測………………………136
5-3 結果與討論…………………………………………………..138
5-3-1粉塵燃氣製造………………………………………….138
5-3-1-1 螺旋進料器轉速對粉塵濃度之影響………138
5-3-2床質質量流率之探討………………………………….140
5-3-2-1 噴嘴氣速對床質質量流率之影響…………140
5-3-2-2 粒徑對床質質量流率之影響………………141
5-3-3 除塵效率………………………………………………142
5-3-3-1 床質質量流率對除塵效率之影響…………142
5-3-3-2 床質粒徑對除塵效率之影響………………144
5-3-4 壓力降…………………………………………………146
5-3-4-1 平均壓力降對除塵效率之影響…………..146
5-3-4-2 床質質量流率對壓力降之影響……………147
5-3-4-3 床質粒徑對壓力降之影響…………………148
5-3-5 氣固分離器……………………………………………150
5-3-5-1 氣固分離器對顆粒床除塵效率之影響……150
5-3-5-2 氣固分離器對顆粒床內壓力降之影響……152
5-4 小結…………………………………………………………..153
第六章 結論與建議………………………………………………….156
6-1 結論…………………………………………………………..156
6-1-1 上昇管管口設計………………………………………156
6-1-2 床質儲存槽分散板設計………………………………157
6-1-3 氣固分離器設計………………………………………157
6-1-4 二維循環式顆粒床除塵與壓力降之探討……………157
6-1-5 上昇管循環式顆粒床除塵與壓力降之探討…………158
6-2 未來研究方向建議…………………………………………..158
參考文獻……………………………………………………………..160
附錄一 高純度石英砂與煤灰粉塵密度測定……………………….179
附錄二 粉塵粒徑之測定…………………………………………….183
個人簡介………………………………………………………………..i
Alvin, M. A., Impact of char and ash fines on porous ceramic filter life. Fuel Process. Technol., 56, 143-168, 1998.

Andries, J., Scarlett, B., Bernard, J. G., Zevenhoven, C. A. P., van de Leur, R. H. M., Ennis, B., de Haan Hogervorst, A. C. R. and Nikolic, P. H., Closed loop controlled integrated hot gas cleanup. Find Report EC Contract No: EN3F-0028-NL(GDF) Delf. Univ. of Technology, (1991).

Arena, U., Amore M. D. and Massimilla, L., Carbon attrition during the fluidized bed combustion of a coal. AIChE J., 29, 40-49, 1983.

Avco Co., Evaluation of granular bed devices, Final Report. Contract No. PH-86-67-51, Phase III, AYATD-0107-67-RR, Publication PB 185561, US Department of Commerce: Washington, DC, 8, 48, 67, 1969.

Bai, J. C., Wu, S. Y. and Lee, A. S., Dust collection efficiency analysis in a two-dimensional circulating granular bed filter. J. Air & Waste Manage. Assoc., 55, 684-694, 2006.

Beizaie, M., Deposition of particles on a single collector. Ph. D. dissertation, Syracuse University, Syracuse, NY, USA, 1977.

Beverloo, W. A., Leniger, H. A. and De Velde, J. V., The flow of granular solids through orifices. Chem. Eng. Sci., 15, 260-269, 1961.

Blasewitz, A. G. and Judson, B. F., Filtration of radioactive aerosols by glass fiber. Chem. Eng. Progress., 51(1), 6J-11J, 1955.

Boehm, L. and Jordan, S., On the filtration of sodium oxide aerosols by multilayer sand bed filters. J. Aerosol Sci., 7(4), 311-318, 1976.

Boller, M. A. and Kavanaugh, M. C., Particle characteristics and headloss increase in granular media filtration. Water Research, 29 (4), 1139-1149, 1995.

Bortzmeyer, R. and Goimard, J. C., Mechanical properties and attrition behavior of CaCO3 powder. Powder Technol., 86, 163-169, 1996.

Brown, R. C., Shi, H., Colver, G. and Soo, S. C., Similitude study of moving bed granular filter. Powder Technol., 138, 201-210, 2003.

Chen, J., Akiyama, T., Nogami, H. and Yagi, J. I., Behavior of powders in a packed bed with lateral inlets. ISIJ International, 34, 133-139, 1994.

Cicero, D. C., Dennis, R. A., Geiling, D. W. and Schimdt, D. K., Hot-gas cleanup for coal-based gas turbines. Mechanical Engineering, 116(9), 70-75, 1994.

Choi, J. H., Son, J. E. and Kim, S. D., Bubble size and frequency in gas fluidized beds. J. Chem. Eng. Jap., 22(2), 171-178, 1988.

Chraibi, M. A. and Flamant, G., Kinetic, thermal chemical attrition of manganese chloride particles in a fluidized bed. Powder Technol., 59(2), 97-107, 1989.

Cook, J. L., Khang, S. J., Lee, S. K. and Keener, T. C., Attrition and changes in particle size distribution of lime sorbets in a circulating fluidized bed absorber. Powder Technol., 89, 1-9, 1996.

Cooper, C.D., Alley, F.C. , (Eds), Air Pollution Control: a Design Approach. Waveland Press, Prospect Heights, Illinois, Second Edition, Ch 1994.

Coury, J. R., Thambimuthu, K. V. and Clift, R., Capture and rebound of dust in granular bed filters. Powder Technol. 50, 253-265, 1987.

Doganoglu, Y., Aerosol collection in fixed and fluidized beds. Ph. D. Dissertation, McGill University, 1975.

Dorfan, M. I., Method and apparatus for suppressing stream and dust rising from coke being quenched. US Patent 2,606,187, 1952.

D’Ottavio, T. and Goren, L. S., Aerosol capture in granular beds in the impaction dominated regime. Aerosol Sci. Tech., 2, 91, 1983.

Fayed M. E. and Otten, L., Handbook of powder science and technology, International Thomson Publishing, Ch. 8, 1997.

Forsythe, W. L. and Hertwig, W. R., Attrition characteristics of fluid cracking catalysts. Ind. & Eng. Chem., 41(6), 1200~1206, 1949.

Foumeny, E. A., Kulkarni, A., Roshani, S. and Vatani, A., Elucidation of pressure drop in packed-bed systems. Applied Thermal Engineering, 16 (3), 195-202, 1996.
Gal, E., Tardos G. and Pfeffer, R., A study of inertial effects in granular bed filtration. AIChE J. 31, 1093-1104, 1985.

Gebhart, J., Roth, C. and Stahlhofen, W., Filtration properties of glass bead media for aerosol particles in the 0.1-2 microns size range. J. Aerosol Sci., 4(5), 355-371, 1973.

Geldart, D., Types of gas fluidization. Powder Technol., 7, 285-292, 1973.

Geldart, D., Single Particle, fixed and quiescent Beds. In: Gas Fluidized Technology. Geldart, D. Ed., John Wiley & Sons, Ch. 2, 1986.

George, S. E. and Grace, J. R., Entrainment of particle from aggregate fluidized beds. AIChE Symp. Ser., 74(176), 67-72, 1978.

Goren, L. S., Aerosol filtration by granular beds. EPA Symp. in Transfer and Utilization of Particulate Control Technology (Rpt.) EPA-600-7-79-004, 1978.

Green, D. W. and Maloney, J. W., Eds., Perry’s chemical engineering’s handbook, 6th Ed., McGraw-Hill, New York, USA, 20-105, 1984.

Guillory, J. L., Placer, F. M. and Grace, D. S., Electrostatic enhancement of moving granular filtration. Environment International, 6, 387-395, 1981.

Gutfinger, C. and Tardos, G. I., Theoretical and experimental investigation on granular bed dust filters. Atmospheric Environment, 6, 853-867, 1979.
Halder, P. K. and Basu, P., Attrition of spherical electrode carbon particles during combustion in a turbulent fluidized bed. Chem. Eng. Sci., 47(3), 527-532, 1992.

Henriquez, V. and Macias-Machin, A., Hot gas filtration using a moving bed heat exchanger-filter (MHEF). Chem. Eng. Process., 369, 353-361, 1997.

Hoffman, H. and Brachthauser, M., A new granular bed filter for hot gas cleaning. Chem. Ing. Tech., 60(1), 36-38, 1988.

Horio, M., Hsieh, Y. S. and Muchi, I., Elutriation and particle transport through the freeboard of a gas-solid fluidized bed. In: Fluidization. Grace, J. R. and Matsen, J. M., Eds., Cambridge University Press., New York, 509, 1980.

Ishikawa, K., Itoh, H., Kubo, Y., Hirao, M. and Yoshida, K., Development of a simultaneous sulfur and dust removal process for the integrated coal gasification combined cycle powder generation system. Kawasaki Heavy Industries. Ltd., Akshi, Japan. KHI Technical Review, 109(4), 30-39, 1991.

Ishikawa, K., Kawamata, N. and Kamei, K., Development of a simultaneous sulfur and dust removal process for IGCC power generation system. In: Gas Cleaning at High Temperatures. Clift, R. and Seville, J. P. K., Eds., Blackie Academic & Professionals, London, UK, 419-435, 1993.

Jackson, M., Fluidized beds for submicron particle collection. AIChE Symp. Ser., 70(141), 82-87, 1974.

Jordan. S. and Lindner, W., Betriebserfahrungen mit einem Querstrom - Schuttschichtifilter (Experiences with a cross-flow granular bed filter). Chem. Ing. Tech., 60(1), 34-35, 1988.

Jordan, S., Baumann, W., Lindner, W. and Paur, H. R., Separation of submicron ammonium salt particles from flue gases. Kernforschungszentrum Karisruhe Gmbh, PARTEC, Normberg (F. R.G.), 19, 1989.

Juvinall, R. A., Kessie, R. W. and Steindler, M. J., Sand-bed filtration of aerosols: A review of published information on their use in industrial and atomic energy facilities. US AEC Rep. ANL-7683, National Technol. Info. Service, Springfield, VA, USA, 1970.

Kamiya, H., Deguchi, K., Gotou, J. and Horio, M., Increasing phenomena of pressure drop during dust removal using a rigid ceramic filter at high temperatures. Powder Technol., 118, 160-165, 2001.

Karabellas, A. J., Wegner, T. H. and Hanratty, T. J., Use of asymptotic relations to correlate mass transfer data in packed beds. Chem. Eng. Sci., 26, 1581, 1971.

Kawasaki, Ltd. Present stage and recent development of moving bed gas clean-up system. Kawasaki Heavy Industries. Ltd., ANRE/DOE-METC Joint Technical Meeting in Surface Coal Gasification, Tokyo, Jap., 1993.

Kawasaki, Ltd., Research and development for moving bed type hot gas cleanup system, Engineering Research Association for Integral Coal Gasification Combined Cycle Power System (IGCC). Kawasaki Heavy Industries Ltd., Tokyo, 1994.

Kirsch, A. A. and Fuchs, A. A., Studies on fibrous aerosol filters. II: Pressure drops in systems of parallel cylinders. Ann. Occup. Hyg., 10, 23-30, 1967.

Klingspor, J. S. and Vernon, J. M., Particulate control for coal combustion. IEA Coal Research Report, IEACR/05, International Energy Agency, London, UK, 1988.

Knetting, P. and Beeckmans, J. M., Capture of monodispersed aerosol particles in a fixed and in a fluidized bed. Canadian J. Chem. Eng. 52, 703-706, 1974.

Kohama, H., Sasaki, K., Watanabe, S. and Sato, K., Dry dust collection of blast furnace exhaust gas by moving granular bed filter. In: Proceedings of the Symposium on the Transfer and Utilization of Particulate Control Technology., US EPA Report No. EPA-600/7-79-044c, Washington D. C., USA, 351-360, 1978.

Kunii, D. and Levenspiel, O., Fluidization Engineering, Butter-worth-Heinemann Publishing, Inc, 2nd Ed., 1991.

Kuo, J. T., Smid, J., Hsiau, S. S. and Chou, C. S., Granular bed filter technology. Proc. Natl. Sci. Counc. ROC(A), 22(1), 17-34, (1998).

Kuwabara, S., The force experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds number. J. of the Phys. Soc. of Japan., 14(4), 527-532, 1959.

Lee, K. W. and Gieseke, J. A., Collection of aerosol particles by packed beds. Environ. Sci. and Technol., 13, 466-470, 1979.

Lee, K. W., Maximum penetration of aerosol particles in granular bed filters. J. of Aerosol Sci., 12, 79-87, 1981.

Lee, K. W. and Schmidt, E. W., Collection of aerosol particles using granular bed filters in the maximum penetration regime. In: Powder Technol. 547-556. Iinoya et al. Eds. Hemisphere Publ. Corp., New York, USA, 1984.

Lee, S. K., Jiang, X., Keener, T. C. and Khang, S. J., Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber. Ind. Eng. Chem. Res., 32, 2758-2766, 1993.

Lewis, W. K., Gilliland, E. R. and Lang, P. M., Elutriation. In: Fluidization. Davidson, J. F. and Harrison, D., Eds., Academic Press, London, New York, Ch. 14, 1971.

McCarthy, D., Yankei, A. J., Patterson, R. G. and Jackson, M. L., Multistage fluidized bed collection of aerosols. Ind. Eng. Chem. Process Design Develop., 15(2), 155-161, 1976.

Meisen, A. and Mathur, K. B., The spouted bed aerosol collection: a. novel device for separating small particles from gases, multi-phase flow system. Inst. Chem. Eng. Symp. Ser. 38, Paper K3, 1974.

Merrick, D. and Highley, J., Particle size reduction and elutriation in a fluidized bed process. AIChE Symp. Ser., 70(137), 366-378, 1974.

Miyamoto, S. and Bohn, H. L., Filtration of airborne particulates by gravel filters: collection efficiency and pressure drop on filtering fume. J. of the Air Pollut. Control Assoc., 25, 40-43, 1975.

Mizukami, S., Wakabayashi, M. and Murata, H., The interaction between the pressure loss of gas and the flow of a medium in a moving granular bed filter. Journal of the Society of Powder Technology, Japan. 22(11), 753-759, 1985.

Mizukami, S., Wakabayashi, M. and Murata, H., Interaction between pressure drop of gas and flow of medium in a moving granular bed filter. Particulate Science and Technology, 5, 131-142, 1987.

Moresco, L. L. and Cooper, J. L., High temperature continuous granular bed filtration of fine combustion particulate. AIChE Symposium on Industrial Aerosol Technology, Part II, Paper No, 32h, Detroit, MI, USA, 1981.

Mori, H. and Kimura, N., Collection efficiency of granular bed filters resulting from inertial impaction and interception. Journal of the Society of Powder Technol., Japan, 32(10), 713-721, 1995.

Mori, H. and Toyama, S., The performance of granular bed filters with dust loading. Journal of the Society of Powder Technology, Japan, 29(1), 18-25, 1992.

Mori, H., Toyama, S. and Ishii, S., Dust load distributions in fibrous mat and granular bed filters with particle reentrainment. Journal of the Society of Powder Technology, Japan, 32(11), 788-795, 1995.

Mori, Y. and Iinoya, K., Dust collection by a granular packed bed. Powder Technology, 38, 557-564, 1984.

Muhammad, E. F. and Lambert O., Eds., Cyclone. In: Handbook of Powder Science & Technology, Chapman & Hall, New York, 727-752, 1997.

Nykanen, J. C., Zevenhoven, C. A. P., Andries, J. and Hein, K. R. G., Moving granular research at Delft University of Technology. Proc. 5th Finnish National Aerosol Symposium, Finland, 119-124, 1993.

Orth, D. A., Sykes, G. H. and Schurr, G. A., The SRP (Savannah River Plant) sand filters: more than a pile of sand. 14th US ERDA Air Cleaning Conference, Sun Valley, OSTI ID: 7269827, USA, 1976.

Otani, Y., Kanaoka, C. and Emi, H., Experimental study of aerosol filtration by the granular bed over a wide range of Reynolds numbers. Aerosol Sci. and Technol., 10, 463-474, 1989.

Paretsky, L., Theodore, L., Pfeffer, R. and Squires, A. M., Panel bed filters for simultaneous removal of fly ash and sulfur dioxide. II. Filtration of dilute aerosols by sand beds. J. of the Air Pollut. Control Assoc., 21(4), 201-209, 1971.

Pemberton, S. T. and Davidson, J. F., Elutriation from fluidized beds. I. Particle injection from the dense phase into the freeboard. Chem. Eng. Sci., 41, 253-262, 1986.

Pendse, H. and Tien, C., General correction of the initial collection efficiency of granular filter beds. AIChE J., 28(4), 677-686, 1982.

Pfeffer, P., Heat and mass transfer in multi-particle systems. IEC Fund., 3, 380, 1964.

Pich, J., Theory of aerosol filtration by fibrous and membrane filters. In: Aerosol Sci., Chapter IX, Davies, C. N., Ed., Academic Press, London, UK and New York, NY, USA, 223-285, 1966.

Ray, Y. C. and Jiang, T. S., Particle attrition phenomena in a fluidized Bed. Powder Technol., 49, 193-206, 1987.

Reese, R. G., The application of a dry scrubber to exhaust gas cleanup. Tappi Journal of the Technical Association of the Pulp and Paper Industry, 60(3), 109-111, 1977.

Risnes, H. and Sønju, O. K., Evaluation of a novel granular bed filtration system for high temperature applications. Progress in Thermo-chemical Biomass Conversion Congress Blackwell Science Progress, Tyrol, Asutria, 1, 730-734, 2001.

Robin, A. M., Jung, D. Y., Kassman, J. S., Leininger, T. F., Wolfenbarger, J. K. and Yang, P. P., Integration and testing of hot desulfurization and entrained flow gasification for power generation systems. In Johnson, R. A. and Jain S. C., Eds., Pro. 12th Annual Gasification and Gas Cleanup Systems Contractors Review Meeting, Washington, Hemisphere Publ., Co. 1, 713-731, 1992.

Rubow, L. N., Borden, M., Buchanan, T. L., Cramp, J. A. C., Fischer, W. H., Klett, M. G., Maruvada, S. M., Nelson, E. T., Weinstein, R. E. and Zacharchuk, R., Technical and economic evaluation of ten high temperature high pressure particulate cleanup systems for pressurized fluidized bed combustion. DOE Report DOE/MC/19196-1654, DOE, Washington, D. C., USA, 1984.

Saxena, S. C., Henry, R. F. and Podoiski, W. F., Technology status of particulate removal from high temperature and pressure combustion gases. AIChE Symp. on Industrial Aerosol Technology, Part II, Paper No. 32e. Detriot, MI, U.S.A., 1981.

Saxena, S. C., Henry, R. F. and Podolski, W. F., Particulate removal from high temperature, high-pressure combustion gases. Prog. Energ. Combust., 11, 193-251, 1985.

Schmidt, E. W., Gieseke, J. A., Gelfand, P., Lugar, T. W. and Furlong, D. A., Filtration theory for granular beds. J. of the Air Pollut. Control Assoc., 28(2), 143-146, 1978.

Shamlou, P. A., Liu, Z. and Yates, J. G., Hydrodynamic influences on particle breakage in fluidized beds. Chem. Eng. Sci., 45(4), 809-817, 1990.
Shibata, K., Shimizh, M., Inaba, S. I., Takahash, R. and Yagi, J. I., Pressure loss and hold-up powders for gas-powder two phase flow in packed beds. ISIJ International, 31, 434-439, 1991.

Shinohara, K. and Golman, B., Air pressure drop across a particle moving bed in a three-dimensional cold model of a blast furnace. Advanced Powder Technol., 16(4), 387-397, 2005.

Sirkar, K. K., Creeping flow mass transfer to a single active sphere in a random spherical in active particle cloud at high Schmidt numbers. Chem. Eng. Sci., 29, 863, 1974.

Sirkar, K. K., Transport in packed bed at inter-mediate Reynolds numbers. Ind. Eng. Chem. Fund., 14, 73, 1975.

Smid, J., Hsiau, S. S., Peng, C. Y. and Lee, H. T., Hot gas cleanup: new designs for moving bed filters. Filtr. Sep., 42(10), 36-38, 2005.

Smid, J., Hsiau, S. S., Peng, C. Y. and Lee, H. T., Moving bed filters for hot gas cleanup. Filtr. Sep., 42(6), 34-37, 2005.

Smid, J., Hsiau, S. S., Peng, C. Y. and Lee, H. T., Development of technologies on hot gas granular moving bed filters for IGCC and PFBC advanced powder systems: Part 1- State of the art. Filtr. Sep., 41(10), 32-35, 2004.

Sorenson, J. P. and Stewart, W. E., Computation of forced convection in slow flow through ducts and packed beds-I, II, III, IV. Chem. Eng. Sci., 29, 819, 1974.
Squires, A. M. and Pfeffer, R., Panel bed filters for simultaneous removal of fly ash and sulfur dioxide. I. Introduction. J. Air Pollut. Control Assoc., 20(8), 534-538, 1970.

Strauss, W., Industrial gas cleaning, 2nd Eds., Pergamon Press, New York, USA, 510, 1975.

Tabak, S., Askarov, B., Rashidov, U., Tabak, I., Manor, G. and Shmulevich, I., Airflow through granular bed packed with cottonseeds. Biosystems Engineering, 88(2), 163-173, 2004.

Tan, A. Y., Prasher, B. D., Guin, J. A., Mass transfer in nonuniform packing. AIChE J., 21(2), 396, 1975.

Tardos, D. I., Abuaf, N. and Gutfinger, C., Dust deposition in granular bed filters: theories and experiments. J.A.P.C.A., 28(4), 354-363, 1978.

Tardos, D. I., Yu, E., Pfeffer, R. and Squires, A. M., Experiments on aerosol filtration in granular sand beds. J. of Colloid. and Interface Science, 71(3), 616-621, 1979.

Tardos, G. I., Gutfinger, C. and Abuaf, N., High Peclat number mass transfer to a sphere in a fixed or fluidized bed. AIChE J., 22, 1146-1149, 1976.

Tardos, G. I., Abuaf, N. and Gutfinger, C., Dust deposition in granular bed filters – theories and experiments. JAPCA, 28(4), 354-363, 1987.

Tardos, G. I., Granular bed filters. In: Handbook of powder science & technology. Fayed, M. E. and Otten, L., Eds., Chapman & Hall, New York, Ch. 17, Part 1, 771-780, 1997.

Thambimuthu, K. V., Doganoglu, Y., Farrokhalaee, T. and Flift, R., Aerosol filtration in fixed granular beds. Symp. of deposition and filtration of particles from gases and liquids. Society of Chemical Industry, London, 107, 1978.

Theones, D. and Kramers, H., Mass transfer from a sphere in various regular packings to a flowing fluid. Chem. Eng. Sci., 8, 271, 1958.

Thomas, J. W. and Yoder, R. E., Aerosol size for maximum penetration through fiber-glass and sand filters. Am. Med. Ass. (AMA) Archives Industr. Health., 13, 545, 1965a.

Thomas, J. W. and Yoder, R. E., Aerosol penetration through a lead-shot column: a math of particle size. Am. Med. Ass. (AMA) Archives Industr. Health., 13, 550, 1965b.

Tsubaki, J. and Tien, C., Gas filtration in granular moving beds - an experimental study. The Canadian Journal of Chem. Eng., 66(2), 271-275, 1988.

Ulerich, N. H., Vaux, R. A., Newby, R. A. and Keairns, D. L., Experimental/engineering support for EPA’s PBC program. Final Rep., EPA-600/7-80-015A, Westinghouse Research and Development Center, Pittsurgh, PA, USA, 1980.

Vaux, W. G. and Fellers, A. W., Measurement of attrition tendency in fluidization. AIChE Symp. Ser., 77(205), 107-115, 1981.

Vaux, W. G. and Keairns, D. L., In Fluidization. Grace Matsen, Ed., Plenum Press., New York, 437-444, 1980.

Vaux, W. G. and Schruben, J. S., Kinetics of attrition in the bubbling zone of a fluidized bed. AIChE Symp. Ser., 79(222), 97-102, 1983.

Wakabayashi, A., Sugawara, T. and Watanabe, S., Dry dust collection of blast furnace exhaust gas by moving granular bed filter. Proceedings of the Third Symposium on the Transfer and Utilization of Particulate Control Technology, US EPA. Washington D. C., USA, 332-340, 1981.

Wen, C. Y. and Hashinger, R. F., Elutriation of solid particles from a dense-phase fluidized bed. AIChE. J., 6, 220-226, 1960.

Werther, J. and Reppenhagen, J., Catalyst attrition in fluidized bed systems. AIChE J., 45(9), 2001-2010, 1999.

Wilson, E. J. and Geankopis, C. J., Liquid mass transfer at very low Reynolds number in packed beds. Ind. Eng. Chem. Fund., 5, 9, 1966.

Wilson, J. S., Status of pressurized fluidized bed research projects sponsored by the US Department of Energy. IEA PFBC Basic Res, Workshop, Goeteborg, Sweden, 1988.

Wu, S.Y. and Baeyens, J., Effect of operating temperature on minimum fluidization velocity. Powder Technol., 67, 217-220, 1991.

Wu, S.Y., Baeyens, J. and Chu, C. Y., Effect of the grid-velocity on attrition in gas fluidized beds. The Canadian Journal of Chemical Engineering, 77, 738-744, 1999.

Xu J., Washizu, Y., Nakagawa, N. and Kato, K., Hold-up of fine particles in a powder-particle spouted bed. Journal of Chemical Engineering of Japan, 31, 1, 61-66, 1998.

Zahradnik, R. L., Anyigbo, J., Steinberg, R. A. and Toor, H. L., Simultaneous removal of fly ash and SO2 from gas streams by a shaft-filter-sorber. Environ. Sci. and Technol., 4(8), 663-667, 1970.

Zakkay, V. and Gbordzoe, E. A. M., A review of hot-gas cleanup devices for PFBC. In: Combustion en Lechos Fluidizados, Programa Comett Comunidad Economica Europea. Zaragoza, Spain, 216-275, 1989.

Zakkay, V., Gbordzoe, E. A. M., Radhakrishnan, R., Sellakumar, K. M., Patel, J., Kasinathan, R., Hass, W. J. and Eckeis, D. E., Particulate and alkali capture from PFBC flue gas utilizing granular bed filter (GBF). Combust. Sci. and Tech., 68(4-6), 113-130, 1989.
Zenz, F. A., Granular bed filters. In: Handbook of powder science & technology. Fayed, M. E. and Otten, L., Eds., Chapman & Hall, New York, Ch. 17, Part 2, 781-802, 1997.

Zevenhoven, C. A. P., Droppert, P. J. and Van de Leur, R. H. M., Electrical characterization of granular materials. Adv. Powder Technol., 2(3), 225-235, 1991.

Zevenhoven, C. A. P., Scarlett, B. and Andries, J., The filtration of PFBC combution gas in a granular bed filter. Filtration and Separation, 29(3), 239-244, 1992.

Zevenhoven, C. A. P., Particle charging and granular bed filtration for high temperature application. Ph. D. Dissertation, Delft University of Technology, Delft, Netherlands, 1992.

Zevenhoven, C. A. P., Hein, K. R. G. and Scarlett, B., Moving granular bed filtration with electrostatic enhancement for high-temperature gas clean-up. Filtration and Separation, 30, 550-553, 1993a.

Zevenhoven, C. A. P., Andries, J., Hein, K. R. G. and Scarlett, B., High temperature gas cleaning for PFBC using a moving granular bed filter. In: Gas Cleaning at High Temperature. Clift, R. and Seville, J. P. K., Eds., Blackie Academic and Professional, London, UK, 1993b.

Zhong, Z., Ooi, J. Y. and Rotter, J. M., The sensitivity of silo flow and wall stresses to filling method. Engineering Structures, 23, 756-767, 2001.

狩野武 著,賴耿陽 譯著,粉粒體輸送裝置,復漢出版社,1978。

吳德昌,朱居德,吳石乙,利用檔板收集氣體中微粒之研究,化工,124期,38-48,1984。

錢建嵩,黃正中,楊玉樹,歐建志,張瑞顯,吳耿東,游逸將,流化床技術,高立圖書有限公司,1992。

吳石乙 編,粉粒體技術,逢甲大學,1999。

吳宗杰,楊子岳,韓忠正,彭鏡禹,李宏台,嵌入式顆粒床過濾器除塵實驗研究,輸送現象及其應用研討會暨固液分離論壇,台北,台灣,695-698,2002。

蕭述三,馬家駒,陳一順,彭鏡禹,徐毅理,流動式顆粒床過濾器之冷性能測試,輸送現象及其應用研討會暨固液分離論壇,台北,台灣,177-180,2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top