跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/25 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李忠錦
研究生(外文):Cheng-jin Li
論文名稱:通過往復橫向振動圓柱之流場
論文名稱(外文):Flow Past a Transversely Oscillating Cylinder
指導教授:鄭仙偉
指導教授(外文):CHENG HSIEN WEI
學位類別:碩士
校院名稱:逢甲大學
系所名稱:水利工程所
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:109
中文關鍵詞:往復橫向振動圓柱橫向振動圓柱
外文關鍵詞:transversely oscillatingcylinder
相關次數:
  • 被引用被引用:3
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本文以數值模式方法,研究往復橫向振動圓柱對流場特性之影響。影響之參數有三,即雷諾數,圓柱振動頻率,以及圓柱振動振幅。由於前人數值研究之案例不多,且對於緩衝區間(介於鎖定與非鎖定區間)尚未深入研究,因此本文將以大量的案例更精準的描述振動圓柱之影響,特別是對昇阻力時間序列之影響,以及對緩衝區之影響,此外也會包括雷諾數和圓柱振動振幅之影響。流場特性包括渦流射出頻率,鎖定效應、平均阻力係數、均方根昇力係數。本文另以波譜分析,由所得之昇阻力時間序列中,分辨出渦流射出之頻率與能量。隨雷諾數越大,在緩衝區能發現的最低昇力與阻力愈小。鎖定區間之昇力與阻力隨圓柱振動振幅增大而增大,並對圓柱產生最大作用力,對圓柱造成最大的影響。
This study set up a numerical simulation that used to discuss the effect of the flow field of a transversely oscillating cylinder. There are three non-dimensional parameters, i.e. the Reynolds number, the oscillating frequency of the cylinder, and the oscillating amplitude of the cylinder. There have been few cases in numerical simulation, and for the buffer region (between lock-on and unlock-on). So this study use a large number of cases to describe the influence of a oscillating cylinder, especially the influence of the time series of the drag and the lift, and the influence of the buffering region, in addition to the influences of Reynolds number and the oscillating amplitude of the cylinder. The characteristic of flow field includes vortex shedding frequency, effect of lock-on, time-average of the drag coefficient, root mean square of the lift coefficient, and so on. Energy spectrum analysis was used to study the time series of the drag and the lift. Then, the frequency and energy of vortex shedding could be found. The lowest lift and drag, which can be found in the buffer region, were decreasing with increasing Reynolds number. In lock-on region, the lift and drag increased with increasing amplitude of cylinder vibration.
謝誌 ………………...………….…………………… I

中文摘要 ………………...………….…………………… II

英文摘要 ………………...………….…………………… III

目 錄 …………...……….…………………… IV
表 目 錄 ……………...……….…………………… VII
圖 目 錄 ……………...……….…………………… VIII
符號說明表 ……………...……….…………………… XII

第一章 概論…………………..............…………. 1
1.1 概述………………………………………… 1
1.2 前人研究…………………………………… 2
1.2.1 圓柱為固定之狀況............. 2
1.2.2 圓柱為強制運動之狀況………………... 4
1.2.3 往復橫向振動圓柱之主要研究成果 …… 6
1.2.4 數值方法概述 …………………………… 8
1.3 研究目的………………………… 9
1.4 章節介紹………………………………. 10

第二章 理論分析…………………………………………. 12
2.1 流場部份......…………………....... 12
2.1.1 制御方程式…………………………….. 12
2.1.2 起始條件………………………………….. 15
2.1.3 邊界條件………………………………….. 15
2.1.3.1 內邊界條件………………………………. 15
2.1.3.2 外邊界條件………………………………. 16
2.1.4 作用力…………………………………….. 16
2.2 圓柱運動部分……………….……….... 17

第三章 數值方法模式 …………………………………… 20
3.1 流場計算數值解法大綱…………………. 21
3.2 起始條件…………………………………. 23
3.3 邊界條件…………………………………. 23
3.1.3.1 內邊界條件……………........... 23
3.1.3.2 外邊界條件………………………………. 24
3.4 座標轉換…….…………………………. 24
3.5 網格系統…….…………………………… 28
3.6 昇力與阻力係…….................... 30
3.6.1 求解昇力與阻力係數……………………. 30
3.6.2 以波譜分析方法分析昇力與阻力係數之時間序 列……………………................. 32
3.7 求解流線函數........................34
3.8 求解渦度 ………………………….......35
3.9 計算圓柱運動……………………………. 36
3.10 時階 的限制………...................37
3.11 其他說明……………………………………38
3.11.1 二階段計算及計算時間……………………38
3.11.2 慣性座標之流線……………………………39

第四章 結果與討論………………………………………. 40
4.1 往復橫向振動圓柱計算結果驗證………. 40
4.1.1 時間平均阻力……………………….......40
4.1.2 昇力之虛部 ……………………… ……….40
4.2 流場隨時間之變化……………….. 43
4.3 圓柱振動頻率的影響…………………… 44
4.3.1 振動頻率的分區…………………………. 44
4.3.2 振動頻率對昇力中各頻率能量的影響…. 48
4.3.3 振動頻率對昇力與阻力的影響…………… 49
4.4 雷諾數對流場特性的影響 ………………51
4.4.1 對各區間的影響….…………………….. 51
4.4.2 對CLrms與CDavg的影響…………………… 52
4.4.3 對波譜能量(ES)的影響………………. 53
4.4.4 CLrms、CDavg與各區間之關係………... 54
4.5 圓柱振動振幅對流場特性的影響 …………55
4.5.1 對各區間的影響….…………………………55
4.5.2 對CLrms與CDavg的影響……………………56
4.5.3 對波譜能量(ES)的影響…………………57
4.5.4 CLrms、CDavg與各區間之關係……………58


第五章 結論與建議………………………………………. 60
5.1 結論………………………..………………60
5.2 建議……………………………………………61

參考文獻…………………………………………………….. 62

表……………………………………………………………... 67

圖……………………………………………………………... 73
【1】鄭仙偉及王佩如,自由下落之圓柱與流體互制之數值模式,國科會研究計畫之報告,187頁,民國93年6月。
【2】周士傑,圓柱下游之卡門渦街流場數值模擬,逢甲大學水利工程學系碩士班碩士論文,151頁,民國92年6月。
【3】盧杰志,流場與彈性圓柱互制系統之數值模擬,逢甲大學水利工程學系碩士班碩士論文,96頁,民國94年6月。
【4】Amsden, A. A., and F. H. Harlow, 1970, A Numerical Technique for Calculating Incompressible Fluid Flow, Las Alamos Scientific Laboratory Report LA-4370, Alamos, New Mexico.
【5】Braza, M., P. Chassing, and H. Haminh, 1986, Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder, J. Fluid Mech., Vol. 165, pp. 79~130.
【6】Brika, D., and A Laneville, 1993, Vortex-Induced Vibrations of a Long Flexible Circular cylinder, J. Fluid Mech., Vol. 250, pp. 481~508.
【7】Cheng, C. H., J. L Hong, and Win Aung, 1997, Numerical Prediction of Lock-on Effect on Convective Heat Transfer From a Transversely Oscillating Circular Cylinder, Int. J. Heat Mass Transfer, Vol. 40, No. 8. pp. 1825~1834.
【8】Chilukuri, R., 1987, Incompress Laminar Flow Past a Transversely Vibrating Cylinder, ASME, J. Fluids Engineering, Vol. 109, pp. 166~171.
【9】Coutanceau, M. and R. Bouard, 1977, Experimental Determination of the Main Feature of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation. Part1. Steady Flow, J. Fluid Mech., Vol. 79, pp. 231~256.
【10】Coutanceau, M. and R. Bouard, 1977, Experimental Determination of the Main Feature of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation. Part2. Unsteady Flow, J. Fluid Mech., Vol. 79, pp. 257~272.
【11】Crausse, E., 1936, These Doctorat-es-Science, Universite de Toulouse.
【12】Harlow, F. H., and A. A. Amsden, 1971, A Numerical Fiuid Dynamics Calculation Method for All Flow Speed, J. Comput. Phys., Vol. 8, pp. 197~213.
【13】Harlow, F. H. and J. E. Welch, 1965, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Phys. Fluids, Vol. 8, pp. 2182~2189.
【14】Hirt, C. W., A. A. Amsden, and J. L. Cook, 1974, An Arbitratry Lagrangian-Eulerian Computing Method for All Flow Speeds, J. Comput. Phys., Vol. 14, pp. 227~253.
【15】Hurlbut, S. E., M. L. Spaulding and F. M. White, 1982, Numerical Solution for Laminar two Dimension Flow about a Cylinder Oscillating in a Uniform Stream, J. Fluids Engineering, Vol. 104, pp. 214~222.
【16】Hwang, Robert R., T. P. Chiang and M. T. Chiao, 1986, Time-Dependent Incompressible Viscous Flow Past a Circular Cylinder, J. the Chinese institute of Engineers. Vol. 9, No. 6, pp. 617~631.
【17】Jain P. C., and K. S. Rao, 1969, Numerical Solution of Unsteady Viscous Incompressible Circular Cylinder, Phys. Fluids Suppl, Vol. 2, pp. 12~57.
【18】Jauvtis, N. and C.H.K. Williamson, 2003, Vortex-Induced Vibration of a Cylinder with two Degrees of Freedom, J. Fluids and Structures, Vol. 17, pp. 1035~1042.
【19】Jordan, S. K. and J. E. Fromm, 1973, Oscillatory Drag, Lift, and Torque on a Circular Cylinder in a Uniform Flow, The Physics Of Fluids, 1972, Vol. 15, No. 3, pp. 371~377.
【20】Justesen, Peter, 1991, A Numerical Study of Oscillating Flow around a Circular Cylinder, J. Fluid Mech., Vol. 222, pp. 157~196.
【21】Khalak, A., and C. H. K. Williamson, 1996, Dynamics of a Hydroelastic Cylinder with Very Low Mass and Damping, J. Fluids and Structures, Vol. 10, pp. 455~472.
【22】Kovasznay, L. S. G., 1949, Hot-Wire Investagation of the Wake behind Cylinder at Low Reynolds Number, Proc. R. Soc. Lond., A 198, 174.
【23】Lin, C., D. Peter and S. Lee, 1976, Numerical Method for Separated Flow Solutions Around a Circular Cylinder, AIAA J., Vol. 14, pp. 900~907.
【24】Lu, X.Y. and J. Sato, 1996, A Numerical Study of Flow Past a Rotationally Oscillating Circular Cylinder, J. Fluids and Structures, Vol. 10, pp. 829~849.
【25】Mahfouz, F. M. and H. M. Badr, 2000, Flow Structure in the Wake of a Rotation Oscillating Cylinder, J. Fluids Engineering, Vol. 122, pp. 290~301.
【26】Martinez, G., 1979, These Docteur-Ingenieur, I.N.P. Toulouse.
【27】Mittal, S. and V. Kumar, 1999, Finite Element Study of Vortex-Induced Cross-Flow and in-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers. International J. for Numerical Methods in Fluids, vol. 31, pp. 1087~1120.
【28】Oseen, C. W., 1910, Über die Stokessche Formel und über die verwandte Aufgabe in der Hydrodynamik, Arkiv Mat., Astron., Fysik, 6(29).
【29】Panton, R. L., 1996, Imcompressible Flow, pp. 388~389.
【30】Proudman, I. and J. R. A. Pearson, 1957, Expansions at Small Reynolds Number for the Flow Past a Sphere and a Circular Cylinder, J. Fluid Mech., Vol. 2, pp. 237~262.
【31】Schaffer, John W. and S. Eskinazi, 1958, An Analysis of the Vortex Street Generated in a Viscous Fluid, J. Fluid Mech., Vol. 6, pp. 241~260.
【32】So, R. M. C., Y. Zhou and M. H. Liu, 2000, Free Vibrations of an Elastic Cylinder in a Cross Flow and their Effects on the near Wake, Experiment in Fluids, Vol. 29, pp. 130~144.
【33】So, R. M. C., Y. Liu and K. Lam, 2001, Numerical Studies of a Freely Vibrating Cylinder in a Cross-Flow, J. Fluids and Structures, Vol. 15, pp. 845~866.
【34】Taneda, S., 1978, Visual Observation of the Flow Past a Circular Cylinder Performing a Rotary Oscillation, J. Physics Society of Japan, Vol. 45, pp. 1038~1043.
【35】Tanida, Y., 1973, Stability of a Circular Cylinder Oscillating in Uniform Flow or in a Wake, J. Fluids Mech., Vol. 61, pp. 769~784.
【36】Tessie-Solier, M., 1931, These Doctorat-es-Science, Universite de Toulouse.
【37】Thoman, D. C. and A. A. Szewczyk, 1969, Time Dependent Viscous Flow Over a Circular Cylinder, Phys. Fluids Suppl., Vol. II, pp. 79~86.
【38】Tritton, D. J., 1971, A Note On Vortex Street Behind Circular Cylinders at Low Reynolds Numbers, J. Fluid Mech., Vol. 45, pp. 203~208.
【39】Versteeg, H. K., and W. Malalasekera, 1999, An Introduction To Computational Fluid Dynamics, The Finite Volum Method, Longman, pp. 125~130.
【40】Wang, X. and C. Dalton, 1991, Oscillating Flow Past a Rigid Circular Cylinder: A Finite Difference Calculation, J. Fluids Engineering, Vol. 113, pp. 377~383.
【41】Willamson, C. H. K., 1985, Sinusoidal Flow Relative to Circular Cylinders, J. Fluid Mech., Vol. 155, pp. 141~174.
【42】Wu, J. M., J. D. Mo, and A. D. Vakili, 1989, On the Wake of a Circular Cylinder with Rotational Oscillations, AIAA-89-1024.
【43】Zhang, J. and C. Dalton, 1993, A Numerical Comparison of Morison Equation Coeifficient for Low Keulegan-Carppenter Number Flows: Both Sinusodal and Nonsinusodal, J. Fluids and Structures, Vol. 7, pp. 39~56.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top