跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇家誼
研究生(外文):Chia-Yi Su
論文名稱:研究苯甲酸溶液於不同激發光波長下的表面增強拉曼散射
論文名稱(外文):The Surface Enhanced Raman Scattering(SERS)Study of Benzoic Acid Solutions Excited by Selected Wavelengths
指導教授:李英德李英德引用關係
指導教授(外文):Ying-Te Lee
學位類別:碩士
校院名稱:逢甲大學
系所名稱:光電研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:63
中文關鍵詞:拉曼光譜波長苯甲酸表面增強拉曼光譜砒碇
外文關鍵詞:Pyridinesilverbenzoic acidwavelengthRamanSERS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
以奈米金屬銀顆粒作為觸媒我們觀察到部份分子的拉曼散射光譜可產生巨大的增強效應。本實驗觀察 0.01M 的 Benzoic acid (BA)濃度溶液裡添加不同奈米金屬銀顆粒質量及不同入射光波長下的表面增強拉曼散射(Surface Enhanced Raman Scattering,SERS)訊號強度的變化。我們的實驗顯示,奈米金屬銀顆粒添加量的多寡對 BA 分子的三個振動模態(800 cm-1、1000 cm-1及1600 cm-1)的增強度(Enhancement)皆呈現非線性的變化趨勢,其中以添加 0.1 克的奈米銀顆粒之 SERS 訊號最高。儘管實驗架構有所不同,本實驗的結果仍然能以 Murray 和 Bodoff 提出的SERS披覆效應機制解釋之。
此外,利用四種不同波長(488 nm、514.5 nm、532 nm、632.8 nm)作為入射光源,發現三個分子振動模態的 SERS 光譜在 514.5 nm ~ 532 nm附近皆會有最大的增強效應。此結果配合局部表面電漿共振 (LSPR) 理論(銀顆粒表面電漿分佈最大值介於入射光波長與被檢測分子振動模散射光波長之間,其 SERS 增強度最強),顯示表面電漿最大值對於三個振動模的最強共振位置落在 532 nm 附近。
SERS 效應主要由兩個機制所造成,ㄧ般而言,化學效應的 SERS 增強效果低於電磁效應的貢獻,而電磁效應所產生的拉曼譜線,並不會有明顯的位移變化。本實驗所觀察的三個振動模,以 800 cm-1 振動模譜線有明顯的位移變化,另外兩個振動模並無明顯位移,且當 SERS 效應越強時(銀添加 0.1 克或入射光波長 514.5 nm ~ 532 nm),譜線位移的變化會越明顯。我們推斷這是因為 800 cm-1 振動模與銀顆粒可產生較強的化學鍵結,並因而使其相對強度較其他兩個振動模可相差一個數量級以上。
It is well known that Raman spectra of a few particular molecules’ vibrational modes can be greatly enhanced by using the silver nano-particles, which is usually named Surface Enhanced Raman Scattering (SERS). In this research, we studied SERS of Benzoic Acid’s methanol solutions at the concentration of 0.01 M with various silver doping amounts under 4 different wavelengths of incidence laser. The SERS of three vibrational modes of BA(800 cm-1、1000 cm-1 and 1600 cm-1)were observed with methanol’s 1034 cm-1 peak as the internal reference of intensity.
All three modes showed a non-linear behavior of SERS’s dependence on the silvers’ doping amount, and all resulted the highest SERS at 0.1g of silver in 18cc’s solution. The coverage dependence theory proposed by Murray and Bodoff can qualitatively explain our observation. In addition, the SERS spectra under four incidence laser wavelengths (488 nm、514.5 nm、532 nm、632.8 nm) indicate that the maximum SERS of all three modes was always occurred around 514 ~ 532nm. Utilizing the theory of Localized Surface Plasmon Rresonance(LSPR), these results implied that maximum of LSPR’s distribution lies around 532nm.
It is believed that the electromagnetic effect, rather than the chemical effect, will not cause Raman shift’s displacement and contribute more to the SERS. Our results showed that 800 cm-1 vibrational mode has obvious shift displacement when SERS effect was the stronger(i.e. adding 0.1 g silver/18cc or using incidence laser wavelengths at 514.5nm ~ 532 nm).We think it is because the 800 cm-1 mode has stronger chemical bond with the silver nano-particles, and consequently has stronger SERS than the other two vibrational modes.
誌謝 i
摘要 ii
Abstract iv
目錄 vi
圖表索引 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 章節概述 4
第二章 原理簡介 5
2.1 拉曼散射光譜 5
2.1.1 古典拉曼散射理論 7
2.1.2 拉曼散射量子理論 10
2-2表面增強拉曼光譜理論 12
2.2.1 SERS披覆理論 16
第三章 實驗儀器與方法 18
3.1 樣品配製 21
3.2 實驗儀器和架構 24
3.2.1 實驗儀器 24
3.2.2 實驗架構 26
3.3 數據分析 27
3.4 Pyridine分子 30
第四章、實驗結果與討論 32
4.1入射光波長的影響 35
4.2銀顆粒添加量的影響 43
4.3 Raman Shift 的變化 48
4.4 銀顆粒的吸收光譜 52
4.5 Pyridine與銀顆粒添加量的影響 54
第五章 結論 58
參考文獻 60
[1].C. A. Mirkin, R. L. Letsinger, R.C. Mucic, J. J. Storhoff, Nature, 382, 607-609, (1996).
[2].K. Kneipp, Y. Wang, H. Kneipp I. Itzkan, R. R. Dasari, M. S. Feld, Physical Review Letters, 78, 1667-1670, (1997).
[3].K. Kneipp, Y. Wang, H. Kneipp,I. Itzkan, R. R. Dasari, M. S. Feld, Physical Review Letters, 76, 2444-2447, (1996).
[4].L. L. Xu, Y. Fang, Spectrochimica Acta Part A, 61, 1991–1995 , (2005).
[5].J. Chowdhury, M. Ghosh, Journal of Raman Spectroscoty, 35, 1023–1033 , (2004).
[6].S. M. Leeds, T. J. Davis, P. W. May, C. D. O. Pickard, M. N. R. Ashfold, Diamond and Related Materials, 7, 233–237, (1998).
[7].T. Lopz-Rios, E. Sandre, S. Leclercq, E. Sauvain, Physical Review Letters, 76, 26, 4935-4938, (1996).
[8].吳國禎,分子振動光譜學概論原理與研究,高立圖書有限公司 (2001).
[9].H. A. Szymanski, Raman Spectroscopy, Plenum Press, New York, (1967).
[10].M. Fleishmann, P.Hendra, Chemical Physics Letters, 26, 163, (1974).
[11].D. L. Jeanmaire, R. P.Van Duyne, Journal of Electroanalytical Chemistry, 84, 1, (1977).
[12].X. Zhang, C.R. Yonzon, M.A. Young, D.A. Stuart, R.P. Van Duyne, IEEE Proc.-Nanobiotechnol, 152, 6, (2005).
[13].E. Perevedentseva, A. Karmenyan, P. H. Chung, C. L. Cheng, Journal of Vacuum Science and Technology B, 23, 5, 1980-1983, (2005).
[14].I. Pocsik, M. Veres, M. Fule, S. Toth, M. Koos, Journal of Non-Crystalline Solids, 338-340, 496–498, (2004).
[15].C. L. Lei, C. C. Wei, M. C. Chen, S. Y. Ou, W. H. Li, K. C. Lee, Materials Science and Engineering, B32, 39-45 , (1995).
[16].T. E. Furtak, J. Reyes, Surface Science, 93, 351, (1980).
[17].L. L. Bao, S. M. Mahurin, D. L. Cheng, S. Dai, Journal of Raman Spectroscopy, 34, 394, (2003).
[18].M. Udagawa, C-C. Chou, Physical Review B, 23, 6843-6846, (1981).

[19].X. F. Lin, B. Ren, Z. L. Yang, G. K. Liu, Z. Q. Tian, Journal of Raman Spectroscoty, 36, :606–612, (2005).
[20].J. A. Miragliotta, J. L. Sample, and S. J. Papadakis, Proceedings of SPIE, 5927, 1-9 , (2005).
[21].R. K. Chang, T. E. Furtak, Surface Enhanced Raman Scattering, Plenum Press, New York, (1982).
[22].A. Campion, P. Kambhampati, Chemical Society Reviews, 27, 241, (1998).
[23].H. Xu, J. Aizpurua, M. Kall, P. Apell, Physical Reviewe E, 62, 3,(2000).
[24].C. A. Murray, S.Bodoff, Physical Review Letters, 52, 25, (1984).
[25].M. Alcolea Palafox, J. L. Nunez, Journal of Quantum Chemistry, 89, 1-24,(2002)
[26].J. P. Schmidt, S. E. Cross, S. K. Buratto, Journal of Chemical Physics, 121, 21, (2004).
[27].K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Physical Review Letters, 76, 14, (1996).
[28].H.Tada, J. Bornkema, A. Bell, Catalysis Lwttwes, 92, 3-4, (2003).

[29].N. Leopold, B. Lendl, Journal of Physical Chemistry B, 107, 5723-5727, (2003).
[30].D. L. Kovalenko, V. S. Bogdanchikova, V. B. Prokopenko, A. A. Alexeenko, Journal of Alloys and Compounds, 341, 208-210, (2002) .
[31].周麟昌,”溶凝膠拉曼光譜研究暨 Benzoic Acid 及 Pyridine溶液表面增強拉曼散射之分析”,逢甲大學光電學系碩士論文 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top