跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江浩誠
研究生(外文):Hao-cheng Chiang
論文名稱:非侵入性動脈順應性量測之研究
論文名稱(外文):The Study of Arterial Compliance by Noninvasive Measuring Methods
指導教授:林欽裕林欽裕引用關係
指導教授(外文):Albert C. Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:順應性血壓順應性電路模型
外文關鍵詞:blood pressurecompliancecompliance circuit model
相關次數:
  • 被引用被引用:4
  • 點閱點閱:3474
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血管順應性(compliance)為動脈血管硬化程度的指標,其定義為該量測點的動脈血管的膨脹管徑位移變化與脈壓之比值,物理的意義就是當血管壁受到脈壓作用時,血管管徑的伸張量之比值。目前研究血管順應性量測方式有許多不同方法,本論文提出兩種量測方式,第一種是延續學長研究之控制量測法效能改善,第二種以模型方法估測動脈血管順應性。
控制量測法中量測儀器包括兩組壓力感測器、一組位移感測器與一組致動器,第一個壓力感測器置於脈壓血管的上游,第二個壓力感測器置於脈壓血管的下游,同時第二個壓力感測器後方連接一致動器,此致動器內部裝設位移感測器可量測致動器之位移。當血管管徑變化,此時致動器隨著第二個壓力感測器之壓力訊號移動,使得壓力感測器微接觸於皮膚,致動器的位移量即是管徑變化量,但同一點之壓力訊號也因此失去,因為兩個壓力感測器在很近的距離內,所以上游壓力感測器之壓力訊號視為下游壓力,結合壓力與位移訊號則可繪製成順應性圖形。
模型估測法係依據動物活體實驗結果分析所得到模型理論,從皮膚到骨頭描述的數學模型,採縱向的討論組織模型與動脈血管關係,組織模型可以等效為順應性電路模型來表示,該模型能夠透過測量脈壓與動脈血壓,計算得到動脈血管的非線性順應性,因此配合電子血壓計初步量測,以及脈壓感測器下壓深度的不同量測得到的脈壓,代入模型即可得到順應性。
The arterial compliance is an indicator of arteriosclerosis. It is defined as the ratio of the variation of arterial vessel diameter and the blood pressure. Although there are many different approaches in measuring the blood vessel compliance, the present study proposes two alternative methods: one is to improve the control-based measurement method, and the other is to develop a model-based estimation method.
In control-based method, the measuring instrument includes two pressure sensors, one displacement sensor, and one actuator. The first pressure sensor is set to measure the upstream blood pressure, and the second one for downstream pressure. The rear of the second one is connected with an actuator, and a displacement sensor is attached inside the actuator for measuring the displacement of the actuator. When the diameter of blood vessel produces variation, the actuator will track the downstream pressure signal by lightly contacting with skin. Then the variation of diameter of blood vessel is the same as the displacement of the actuator, but the pressure signal is lost at the same time. Therefore, in the near distance, assuming the downstream blood pressure is identical to the upstream pressure, and then the corresponding compliance is plotted by both of pressure and displacement signals.
The model-based estimation method is verified by animal experiment in vivo. The mathematic model is composed of the tissue and vessel from skin to the femur, which is then expressed by compliance circuit model. The model uses skin blood pressure, arterial blood pressure, and reference pressure estimated by electric sphygmomanometer to calculate the nonlinear compliance of blood vessel.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1.1研究背景 1
1.2國內外相關研究 1
1.3研究目的與動機 3
1.4本文架構 5
第二章 動物實驗 6
2.1活體實驗簡介 6
2.2活體動物實驗 6
2.2.1實驗敘述 6
2.2.2實驗動物處理 6
2.2.3實驗儀器設備與試劑 7
2.2.4實驗方法 8
2.3活體實驗量測結果與分析 12
第三章 控制量測法 16
3.1控制量測法介紹 16
3.2壓電致動器原理 19
3.2.1 壓電致動器簡介 19
3.2.2 遲滯現象 19
3.2.3遲滯補償 22
3.3模型模糊控制法則 25
3.4遲滯模糊觀察器設計 28
3.5控制器驗證 31
3.4.1控制器設計 31
3.4.2模糊觀察器設計程序 34
3.4.3軟體驗證 36
3.4.4硬體驗證 39
3.4.5順應性量測儀 43
3.6橈動脈順應性實驗1 44
第四章 脈壓傳遞模型 47
4.1物理模型 47
4.2直流等效模型 49
4.3交流等效模型 49
4.4組織等效模型 50
4.5模型驗證結果 51
4.6模型估測法 57
4.7橈動脈順應性實驗2 59
第五章 結論 61
參考文獻 62
[1] 行政院衛生署2005年衛生統計指標網址:http://www.doh.gov.tw/cht/index.aspx。
[2] 吳賢財,“你的動脈硬了嗎?”,科學發展2005年3月,387期,70~73頁
[3] Michael J. Joyner, MD, “Effect of Exercise on Arterial Compliance,” Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905.
[4] Edmundo I. Cabrera Fischer et al, “Endothelium-dependent arterial wall tone elasticity modulated by blood viscosity,” Am J Physiol Heart Circ Physiol, Vol. 282, Issue 2, H389-H394, February 2002.
[5] Hitoshi Mita, Hiroshi Kanai, Yoshiro Koiwa, Masataka Ichiki and Fumiaki Tezuka, “Imaging of cross-sectional elasticity of arterial wall using intravascular ultrasonography (IVUS) ”, IEEE Ultrasonics Symposium 2000.
[6] Hideyuki Hasegawa1, Hiroshi Kanai, Nozomu Hoshimiya, Yoshiro Koiwa, Etsuko Fushimi, and Masataka Ichiki, “A method for evaluation of regional elasticity of arterial wall with non-uniform wall thickness by measurement of its change in thickness during an entire heartbeat ”, IEEE Ultrasonics Symposium , 2000.
[7] Takehiko Suginouchi, Makoto Kato, Masahiko Hashimoto, Yoshinao Tan- naka, and Hiroshi Kanai, “Quantitative assessment of the phase tracking method for measurement of the elastic characteristics of arterial wall”, IEEE Ultrasonics ymposium -1608, 2001.
[8] Yoshiro Koiwa, Hideichi Kamada,Kunio Shirato, Yoshiko Saitoh and Hiroshi Kanai, “ Importance of Regional Myocardial Layer Function by Phased Traking Method in Doxorubicin Cardiomyopathy”, IEEE Ultrasonics Symposium 1999.
[9] 阮耀鋒,“利用超音波評估人體頸動脈之彈性特性”,國立成功大學醫學工程研究所碩士論文,2001。

[10] Y.W., Shau, C.L. Wang, J.Y. Shieh and T.C. Hsu (1999), Non-invasive Assessment of the viscoelasticity of peripheral arteries, Ultrasound in Medicine and Biology, 25(9):1377-1388.
[11] Serge Vullie´moz, Nikos Stergiopulos, and Reto Meuli1, “Estimation of Local Aortic Elastic Properties With MRI”, Magnetic Resonance in Medicine 47:649–654 (2002)
[12] Frank, Otto, “Die Grundform des arteriellen Pulses'', Zeitung für Biologie 37 483-586 (1899).
[13] Badie Dioure, Jean-Philippe Siche, Vincent Comparat, Jean-Philippe Baguet, Jean-Michel Mallion, “Study of arterial blood pressure by a Windkessel-type model:influence of arterial functional properties”, Computer Methods and Programs in Biomedicine 60 (1999) 11-22.
[14] S. Canic, and A. Mikelic, “Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries,” SIAM J. Appl. Dyn. Sys., 2(3) 2003 431-463.
[15] S. Canic, A. Mikelic and J. Tambaca, “A two-dimensional effective model describing fluid-structure interaction in blood flow: analysis, simulation and experimental validation,” Special Issue of Comptes Rendus Mechanique Acad. Sci. Paris, 2005.
[16] Y. C. Fung, Biomechanics: Circulation, Springer Verlag, 1997
[17] 林欽裕、陳宗鴻,“血管動態順應性量測儀之機構設計”,逢甲大學自動控制工程研究所碩士論文,2003。
[18] 林欽裕、何中財,“非線性動態順應性量測儀之電路設計及驗證”,逢甲大學電子工程研究所碩士論文,2004。
[19] 宋晏人等,“人體斷面解剖圖譜”,合計圖書出版社,民國89年11月10日。
[20] http://www.medphys.ucl.ac.uk/teaching/undergrad/projects/2003/group_03/how.html

[21] Taylor, M.G., Wave travel in arteries. Ph.D. Dissertation, University of London, 1959.
[22] 黃恆庭,“壓電致動器遲滯模型之觀測器”,逢甲大學自動控制工程學系,碩士論文,民國九十年。
[23] K.Tanaka, and H. O. Wang, “Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach”, John Wiley & Sons, Inc, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top