跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 12:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍倉修
研究生(外文):Tsang-Hsin Lan
論文名稱:燃料電池的發電特性研究
論文名稱(外文):Characteristic Study for Fuel Cell
指導教授:黃思倫黃思倫引用關係吳穎強
指導教授(外文):Sy-Ruen HuangYieng-Chiang Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:125
中文關鍵詞:燃料電池模型電容效應燃料電池歐姆極化區
外文關鍵詞:Change Double Layer EffectCircuit Model of the Fuel CellFuel CellOhmic of Polarization Areas
相關次數:
  • 被引用被引用:9
  • 點閱點閱:999
  • 評分評分:
  • 下載下載:258
  • 收藏至我的研究室書目清單書目收藏:1
本論文主之旨在設計並製作一台,最大可量測燃料電池容量為3KW之測試設備,並藉此設備來量測燃料電池之各種特性曲線,以及依據量測之結果進行驗證來證明所建構的測試設備的精確度高。另一方面,探討燃料電池之歐姆極化區,是否存在電容效應以及提出新的燃料電池之電路模型,作為未來發電控制的參考依據。
在研究中亦特別針對設備與操作人員在進行量測與控制時的安全的部分加以考量,設計有五個主要功能,分述如下:(1)裝設氫氣洩漏偵測器。由於氫氣為極危險之氣體,其爆炸下限為空氣濃度的4%。因此,當洩漏量達到設定值1.5%時(可依各現場情況而定),即代表已有洩漏的情況,此時會使警鈴作響,可在第一時間提醒現場人員馬上終止測試的動作,並且迅速關閉氫氣之總電磁閥。(2)在氫氣與氧氣之管路上亦有加裝壓力感知器,可於量測期間,當其中任一氣體之壓力低於設定值以下,亦將出現警示,因為此時僅剩下單一氣體,會造成電化學反應無法完全反應的現象。(3)當然料電池的操作溫度高於設值時,同樣會出現警示,同時會控制比例閥進行自動切斷氫氣與氧氣的供應,以保護燃料電池免於受損。(4)若燃料電池的輸出電流超出設定值時(亦有可能是發生負載短路的情況),亦必須自動控制氫氣及氧氣的比例閥,迅速關閉燃料的供應,以保護燃料電池的壽命,同樣會出現警示。(5)在不同操作條件下,控制負載的輸出,由於燃料電池的輸出能力有一定的限制,若所提供過量的燃料並無法增加輸出產生對應的電能,因此,亦特別在本設計系統的氫氣與氧氣之源頭,加裝浮子式流量計,預先調整可能的最大需求量,以節省不必要之氣體消耗。
This thesis main purpose is to design and make one to aim at, most heavy can quantity examine fuel cell capacity the test equipment of 3KW, and make use of this coming amount of equipment to examine various kinds of characteristic curves of the fuel cell, and the result examined to quantity verifies the accuracy that prove the test equipment built and constructed precise. On the other hand, probe into one Ohmic of polarization areas of the fuel cell, the circuit model that there is electric capacity effect and propose the new fuel cell, reference basis generating electricity and controlling as the future.
Also especially consider to the equipment and operation safety when the attendant examine and control in the on going amount under study for action, There are five main functions, as following: ( 1 ) The installation hydrogen leaks and detects the examining device. Because the hydrogen, for the extremely dangerous gas, its explosion lower limit is 4% of the thickness of air. So, when it is 1.5% that the letting out amount reaches and establishes (can be contingent upon every on-the-spot situation), namely has represented and already had a situation let out. The alarm bell will start ringing at this moment, movement that can remind on-the-spot personnel and stop being tested at once as soon as possible s, and close the total electromagnetic valve of the hydrogen rapidly. ( 2 ) Also install pressure perceiving devices additional on the pipelines of the hydrogen and oxygen. Can when examining, will let pressure of body lower than person who establish a spell among them on quantity, will also warn. Because only there is body left at this moment, will cause the phenomenon of electric unable complete response of chemical reaction. ( 3 ) When the operation temperature of what is certainly expects the battery is higher than the having value, will warn too. At the same time, will control the supply that the proportion valve cut off the hydrogen and oxygen automatically, avoid being damaged in order to protect the fuel cell. ( 4 ) When the output electric current of the fuel cell goes beyond the establishing value (also the situation of the load short circuit take place probably), must automatically controlled hydrogen and proportion valve of the oxygen also, close the supply of the fuel rapidly, will warn too by protecting the life-span of the fuel cell. ( 5 ) Under different conditions of operating, control the output of load. Because output ability of fuel cell has certain restriction, if offered excessively fuel and unable to is it is to produce the corresponding electric energy to output to increase. So, are also especially originally designing the systematic hydrogen and source of the oxygen and installing the float type flow meter additional, preset the possible greatest demand, consume in order to save the unnecessary gas.
中文摘要 i
英文摘要 iii
目錄 vi
圖目錄 viii
表目錄 xi
2. 第一章 緒論 1
1.1 研究背景與目的 1
1.2 內容摘要 3
第二章 燃料電池簡介 5
2.1 前言 5
2.2 燃料電池簡介 6
2.2.1 燃料電池的歷史 6
2.2.2 燃料電池的種類 6
2.2.2.1 鹼性燃料電池 8
2.2.2.2 熔融碳酸鹽燃料電池 8
2.2.2.3 磷酸燃料電池 9
2.2.2.4 質子交換膜燃料電池 9
2.2.2.5 固態氧化物燃料電池 11
2.2.3 燃料電池的工作原理 11
2.2.4 燃料電池堆 16
2.2.5 燃料電池之特點 18
第三章 燃料電池之特性 20
3.1 前言 20
3.2 電極熱力學 20
3.2.1 自由能與理想電位 21
3.2.2 理想電位與溫度之關係 24
3.2.3 理想電位與壓力之關係 27

3.3 電極反應動力學 33
3.3.1 Butler-Volmer方程式 33
3.3.2 極化 40
3.3.3 活化過電位 40
3.3.4 濃度過電位 47
3.3.5 歐姆過電位 51
3.3.6 極化曲線 52
3.4 效率 54
3.4.1 燃料電池的理想效率 54
3.4.2 燃料電池的效率 57
第四章 自製燃料電池測試平台之架設與量測 58
4.1 前言 58
4.2 燃料電池測試系統暨各元件介紹 58
4.2.1 浮子式流量計 58
4.2.2 氫氣防爆型壓力傳送器 60
4.2.3 質量流量計與比例閥 62
4.2.4 儲氣鋼瓶 64
4.2.5 分流器 65
4.2.6 NI PCI-6229資料擷取卡 66
4.2.7 Labview 8.0 69
4.2.8 氫氣洩漏偵測器 72
4.2.9 負載調整VR 74
4.2.10 伺服馬達控制 74
4.2.11 觸控式工業電腦 75
4.2.12 燃料電池 77
4.2.13 系統組成圖 78
第五章 燃料電池之動態特性 79
5.1 前言 79
5.2 燃料電池之動態特性介紹 80
5.2.1 燃料電池模型 80
5.2.2 燃料電池之電容效應 83
5.3 燃料電池之性能測試 86
5.3.1 自製燃料電池測試機之性能確認 86
5.3.2 燃料電池動態曲線量測 87
5.4 燃料電池等效電路模型修正 116
第六章 結論 118
參考文獻 120
[01]J. Giner, and C. Hunter, “Model of a Hydrogen-Air Fuel Cell with Alkaline Electrolyte,” J. Electrochem. Soc., Vol. 116, pp. 1124, 1969.
[02]A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook,” Van Nostrand Reinhold, New York, 1989.
[03]G. J. K. Acres, J. G. Frost, G. A. Hards, R. J. Potter, T. R. Ralph, D. Thompsett, G. T. Burstein, and G. J. Hutchings, “Electrocatalysts for Fuel Cells,” Catalysis Today, Vol. 38, pp. 393, 1997.
[04]鄭煜騰、萬瑞霙、林修正,酸性燃料電池的製成研究,能源季刊,第二十五卷第四期,161頁,1995。
[05]O. Stonehart, “Development of Alloy Electrocatalysts for Phophoric Acid Fuel Cells (PAFC) ,” J. Appl. Electrochem. , Vol. 22, pp. 995, 1992.
[06]鄭煜騰、鄭耀宗,質子交換膜型燃料電池的製造技術,能源季刊,第二十七卷 第二期,118 頁,1997。
[07]K. Scott, W.M. Taama, and P. Argyropoulos, “Engineering Aspects of the Direct Methanol Fuel Cell System,” J. Power Sources. , Vol. 79, pp. 43, 1999.
[08]http://www.scientific-computing.con/scwjanfeb03fuelcell.html
[09]http://lecl.hanyang.ac.kr
[10]V. A. Paganin, E. A.Ticianelli, and E. R. Gonzales, “Development and Electrochemical Studies of Gas Diffusion Electrodes for Polymer Electrolyte Fuel Cells,” J. Appl. Electrochem. , Vol. 26, pp. 297, 1996.
[11]Buchi, F.N., Tran, D. and Srinivasan, S., “Performance of tem Fuel Cells without External Humidification of the Reactant Gases,” Electrochemical Society Proceedings, Vol. 95, No. 23, pp. 226-240, 1997.
[12]黃鎮江,“燃料電池,” 台北,全華科技圖書股份有限公司,民國九十二年。
[13]王正男,惠汝生”自動量測系統-LavVIEW,” 台北,全華科技圖書股份有限公司,民國八十九年。
[14]J. R. J. Larminie, “Current Interrupt Techniques For Circuit Modelling,” IEE 1994.
[15]R. F. Mann,J.C. Amphlett, M.A.I Hooper, H.M. Jensen, B.A Peppley, and P.R. Roberge, “Development and application of a generalised steady-state electrochemical model for a PEM fuel cell,” Journal of Power Sources, Vol. 86,pp. 173-180, 2000.
[16]J. J. Baschuck, and X. Li, “Modelling of polymer electrolyte membrene fuel cells with variable degrees of water flooding,” Journal of Power Sources, Vol 86, pp. 181-186, 2000.
[17]J. C. Amphlett, R.F. Mann, B.A. Peppley, P.R. Roberge, and A. Rodrigues, “A model predicting transient responses of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 61, pp. 183-188, 1996.
[18]J. Padulles, G. W. Ault, and J.R. Mcdonald, “An integrated SOFC plant dynamic modelo for power systems simulation,” Journal of Power Sources Vol. 86, pp. 495-500, 2000.
[19]J.E. Larminie and A. Dicks, “Fuel Cell System Explained,” John Wiley & Sons, Chi-Chester, England, pp. 308, 2000.
[20]J.M. Correa, F. A. Farrent, and L. N. Canha, “An Analysis of the Dynamic Performance of Proton Exchange Membrane Fuel Cells Using An Electromechanical Model,” Proceedings of the IEEE – Industrial Electronics Conference 2001-IECON’01, pp.141-146, 2001.
[21]J.M Correa , F.A.Farret,V.B.Popov, and J.B.Parizzi, “Influence of the Modeling Parameters on the Simulation Accuracy of Proton Exchange Membrane Fuel Cells,” IEEE 2003
[22]M.Hashem Nehrir, and Steven R.Shaw, “Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits,” IEEE Transactions on Energy Conversion.Vol.20,June 2005.
[23]K.J.Runtz, and M.D.Lyster, “Fuel Cell Equivalent Circuit Models for Passive Mode Testing and Dynamic Mode Design,” IEEE CCECE , Saskatoon May 2005.
[24]S.Yerramalla, A.Davari,and A.Feliachi, ”Dynamic modeling and analysis of polymer electrolyte fuel cell,”IEEE vol.1,pp.82-86,July 2002.
[25]A.J.Garnier,M.Pera,D.Hissel,F.Harel,D.Candusso,N.Glandut,J.Diard,A.De Bernardinis , J.Kauffmann , and G.Coquery, ”Dynamic PEM fuel cell modeling for automotive applications,” IEEE VTC 2003-Fall,Vol. 5,pp.3284-3288,October,2003
[26] http://www.consultrsr.com/resources/eis/cpe1.htm
[27] http://www.consultrsr.com/resources/eis/cpe2.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top