跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:康恆達
研究生(外文):Hen-Ta Kang
論文名稱:電漿聚合非晶質碳-矽-氮保護膜及阻濕特性探討
論文名稱(外文):Study on the Plasma Polymerized Amorphous Carbon-Silicon-Nitrogen Films and Their Moisture Permeation Resistance
指導教授:何主亮何主亮引用關係
指導教授(外文):J. L. He
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:有機發光二極體水氣滲透率六甲基二矽胺烷疏水性電漿聚合阻濕特性聚對苯二甲酸乙二醇酯
外文關鍵詞:HMDSZMoisture resistanceOLEDHydrophobicPETWVPRPlasma polymerization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前塑膠材料已被廣用於食品包裝、建材、醫療、家電、3C構件等。而在平面顯示器中因塑膠材的輕薄且可撓曲的特性,吸引大量研究以便取代玻璃基板,然而塑膠材在本質上對於水氣滲透與阻濕效果有限的問題,使得水氣滲透之後,可能伴隨的化學或電化學反應會逐漸破壞原有電子元件的功能,使得產品可靠度降低。以有機發光二極體(Organic light-emitting diode, OLED)顯示器為例,水氣對有機發光二極體陰極造成的電化學反應會使有機發光二極體劣化而產生暗點並降低產品壽命;於是如何讓塑膠材料具有高阻濕性、高疏水性來阻止水氣滲透的能力變得非常重要。
電漿聚合反應(Plasma polymerization) 藉著電漿加強作用使得有機反應物蒸氣可以在較低的溫度下形成聚合反應,也可以用來產生在一般化學聚合反應條件下,無法得到的有機化合物聚合膜,此聚合膜為三度空間發展屬網狀交鏈(Cross-linking)的緻密結構,具高耐熱性、高絕緣性、化學惰性,沒有針孔缺陷等優點,非常適合用來作為塑膠材料的阻濕特性改質。本實驗旨在研究探討利用六甲基二矽胺烷(HMDSZ)為原料,透過電漿聚合反應製備非晶質碳-矽-氮保護膜於聚對苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)基材上,控制不同之施鍍條件,觀察鍍層的本質特性、機械性質、微觀形貌、疏水性質及對阻濕效能之影響。
研究結果顯示,改變氬氣流量、電漿功率與沉積時間等條件時皆可得到緻密、無針孔的鍍層;FTIR確認鍍層皆有明顯的Si-C和Si-N-Si鍵結強度且隨著氬氣流量增加而增加。當氬氣流量增加至100 sccm時可以得到最大的Si-C和Si-N-Si官能基強度,此時的非晶質碳-矽-氮保護膜擁有最佳的碳-矽-氮網狀交鏈鍵結。因為非晶質碳-矽-氮保護膜具有-CH3之官能基鍵結強度,故水滴接觸角在改變任何參數下皆呈疏水特性,其接觸角落在80°~100°之間;百格附著性測試確認鍍層檢測等級皆為ISO/ASTM之最高0/5B等級,表示鍍層與PET基材之間有較高之附著性。在鉛筆硬度測試中可知鍍層硬度隨著膜厚增加而增加,最高可達4H等級,但是當電漿功率大於5W時,因電漿之離子轟擊效應會破壞鍍層緻密性,故此時鍍層硬度未隨膜厚而增加。
鍍層阻濕能力隨著膜厚增加而增加,主要是因為膜厚增加時亦增加氣體分子的擴散路徑,由於非晶質碳-矽-氮保護膜皆呈緻密、無針孔之特性,故鍍層之氣體穿透並非經由結構性滲透進行,而是透過擴散作用來進行,隨著增加氣體分子擴散路徑可以有效阻礙氣體分子對薄膜的穿透,得到較高的阻濕能力。透濕度量測中,當氬氣流量100 sccm,艙體壓力0.3 Torr,電漿功率5 W及沉積時間為150 min時,可沉積出阻濕特性最高的非晶質碳-矽-氮保護膜,其值為3.9 g·m-2·day-1相較於原始的PET基材透濕度值19.7 g·m-2·day-1提高了5倍。
Plastic materials have been extensively applied to foods package, architectural construction, medical care, home appliance as well as 3C components. It also attracts tremendous amount of studies of the alternative materials to glass substrate in flat panel display device due to lightweight and flexible nature. However the intrinsic high gas and water vapor permeation might cause damage to the electronic device and loss reliability. Organic light-emitting diode (OLED) display panel device as an example, water vapor provides the environment for electrochemical reaction between moisture and cathode of OLED device and cause dark spot formation. The improvement in moisture resistance and hydrophobic character of plastic materials should then be resolved for further applications.
Plasma polymerization is increasingly important these years for material surfaces modification. Because of low temperature deposition and obtaining unique polymer films than conventionally synthesized polymer. The deposited polymer film possess three-dimensional high cross-linking and pinhole-free structure, thus likely for moisture resistant surface modification on plastic materials. The purpose of this study is corelate moisture resistance and microstructure of the deposited carbon-silicon-nitrogen polymer films on Poly ethylene terephthalate (PET) substrate with respect to the coating parameters. As a result to optimize moisture resistance.
Experimental results show that the deposited film present a featureless morphology without any pinhole and void. FTIR spectrum of the deposits confirm the existed Si-C and Si-N-Si bound with the intensity increased as a function of argon gas flow increase. Strongest SiC and Si-N-Si bond appears to the coating deposited at power input of 5W with argon flow rate at 100 sccm, with working pressure at 0.3 Torr for 60 min deposition time. Water contact angle of the deposits falls into 80°~ 100° showing hydrophobic nature regardless coating parameters used. The film adhesion on PET present the highest 0/5B grade in ISO/ASTM standard scratch test. The pencil hardness of the deposits can reach 4H and is increased as a function of films thickness increasing with condition of high power over 5W, it no longer increase as increasing thickness due probably to the plasma damage to the film.
Moisture resistance of the deposits increases as a function of thickness due to an increased diffusion path of gases. Due to pinhole free nature of the deposits, gas permeation is likely to occur by diffusion effect than structure permeation. Within 2 μm film thickness of the deposits in this study, an increased diffusion paths is effectively increased for better barrier performance. An optimized water vapor permeation rate WVPR 3.9 g·m-2·day-1 of the deposits is improved, 5 times lower than bare PET substrate (WVPR 19.7 g·m-2·day-1) when coating parameter of argon gas flow is 100 sccm with working pressure at 0.3 Torr, power input at 5 W with deposition time 150 min.
中文摘要.................................................i
英文摘要.................................................iii
總目錄...................................................v
圖目錄...................................................vii
表目錄...................................................ix
第一章 前言..............................................1
第二章 文獻回顧..........................................3
2-1 阻水的重要.......................................3
2-2 現階段有機發光二極體阻水技術之發展...............5
2-3 電漿聚合原理.....................................12
2-4 氣體穿透原理.....................................18
第三章 實驗方法及步驟....................................22
3-1 實驗設計與流程...................................22
3-2 實驗材料.........................................24
3-3 分析儀器.........................................25
3-4 電漿聚合系統.....................................29
3-5 電漿聚合步驟.....................................33
第四章 結果與討論........................................35
4-1氬氣流量對非晶質碳-矽-氮保護膜之影響..............35
4-1-1 鍍層官能基之影響.............................35
4-1-2 鍍層微觀形貌之影響...........................40
4-1-3 鍍層沉積速率之影響...........................43
4-1-4 鍍層水滴接觸角之影響.........................44
4-1-5 鍍層附著性之影響.............................45
4-1-6 鍍層硬度之影響...............................45
4-1-7 鍍層水氣透濕度之影響.........................46
4-2電漿功率對非晶質碳-矽-氮保護膜之影響..............48
4-2-1 鍍層官能基之影響.............................48
4-2-2 鍍層微觀形貌之影響...........................50
4-2-3 鍍層沉積速率之影響...........................53
4-2-4 鍍層水滴接觸角之影響.........................54
4-2-5 鍍層附著性之影響.............................55
4-2-6 鍍層硬度之影響...............................55
4-2-7 鍍層水氣透濕度之影響.........................56
4-3沉積時間對非晶質碳-矽-氮保護膜之探討..............58
4-3-1 鍍層官能基之影響.............................58
4-3-2 鍍層微觀形貌之影響...........................59
4-3-3 鍍層膜厚與時間之關係.........................63
4-3-4 鍍層水滴接觸角之影響.........................64
4-3-5 鍍層附著性之影響.............................65
4-3-6 鍍層硬度之影響...............................65
4-3-7 鍍層水氣透濕度之影響...............................67
第五章 結論..............................................68
參考文獻.................................................70
誌謝.....................................................74
附錄資料.................................................75
【1】田宏隆,〝高阻氣高透明塗料材料技術與運用〞,工業材料雜誌,第206期,2004,2
月P.P.87-92。
【2】張秋萍, 黃天恆, “電漿技術應用於OLED阻氣膜介紹”, 化工資訊 與商情, 第18期,
2004. 12. 18. P.P.53~58。
【3】黃承揚,〝低溫塑膠光學濾鏡電漿聚合膜技術〞,光學工程,第82期,2003,6月
P.P.124-131。
【4】呂伯彥,〝超長壽命有機發光二極體所面臨的課題〞,工業材料雜誌,第195期,
2003,3月P.P.115-119。
【5】田宏隆,〝平面顯示器用可撓式塑膠基材技術與運用〞,工業材料雜誌,第156期,
2003,3月P.P.195-162。
【6】袁建華,〝有機發光二極體:薄片型平面顯示器的新秀〞,電子與材料雜誌,第一期,
1999年2月。
【7】Vitex Systems公司簡報資料, M.S. Weaver, J.A. Silvernail, A.B. Chwang, R.H.
Hewitt, S.Y. Mao, L.A. Michalski, T. Ngo, M.R. Nugent, K. Rajan, M.A.
Rothman, and J.J. Brown, 〝Plastic organic light emitting display〞,
Universal Display Corporation, Ewing, NJ, P4.
【8】陳彌彰,〝OLED 產業發展剖析〞,DigiTimes Research,產業分析,2003年5月13
日。
【9】Y. F. Liew, H. Aziz, N. X. Hu, H. S. O. Chan, G. Xu, and Z.Popovic,
〝Investigation of the sites of dark spots in organic light-emitting
devices〞, Appl. Phys. Lett., 77, 2650 ( 2000 ).
【10】S. F. Lim, W Wang, and S. J. Chua, 〝Degradation of organic light-
emitting devices due to formation and growth of dark spots〞, Mat. Sci.
Eng. B, 85, 154 (2001).
【11】P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty,
and M. E. Thompson,〝Reliability and degradition of organic light emitting
devices〞, Appl. Phys. Lett., 65, 2922 (1994).
【12】石安和周重石,〝有機發光元件防水層之形成方法〞,中華民國經濟部智慧財產局專
利,90119708 案號。
【13】Vitex Suystems公司簡報資料,〝Barix Encapsulation for OLED Displays〞,
November, 2002.
【14】W. Huang, X. Wang, M. Sheng, L. Xu, F. Stubhan, L. Luo, T. Feng, X. Wang,
F. Zhang and S. Zou, 〝Low temperature PECVD SiNx films applied in OLED
packaging〞, Materials Science and Engineering, B98(2003), pp.248-254.
【15】M. T. Kim and J.Lee, 〝Characterization of amorphous SiC:H films
deposited from hexamethyldisilazane〞, Thin Solid Films, 303 (1997),
pp.173-179.
【16】K. Teshima, H. Sugimura, Y. Inoue and O. Takai, 〝Synthesis of silica
films on a polymeric material by plasma-enhanced CVD using
tetramethoxysilane〞, Surface and Coatings Technology 169 –170 (2003),
PP.583–586.
【17】K. Teshima, Y. Inoue, H. Sugimura and O. Takai,〝Room-temperature
deposition of high-purity silicon oxide films by RF plasma-enhanced
CVD 〞, Surf. Coat. Technol. 146-147, (2001) PP.451-456.
【18】M. Walther, M. Heming and M. Spallek, 〝Multilayer barrier coating system
produced by plasma-impulse chemical vapor deposition (PICVD)〞, Surf.
Coat. Technol. 80, (1996), PP.200-202.
【19】H. Lifka, H. A. van Esch, J. J. W. M. Rosink, 〝Thin Film Encapsulation
of OLED Displays with a NONON Stack 〞, SID 50.3, 1384 (2004).
【20】K. Akedo, A. Miura, H. Fujikawa, and Y. Taga, 〝Plasma-CVD SiNx /Plasma-
Polymerized CNx:H Multi-layer Passivation Films for Organic Light Emitting
Diodes〞, SID LP-5 DIGEST 559-561(2003).
【21】確信電子公告,〝 確信的特殊塗敷服務通過RoHS測試〞電子工程專輯雜誌,2005年
06月06日.
【22】J.I.B. Wilson, M.. Burnside, 〝Optimization of plasma polymers for
hydrophobic coatings〞, The Institution of Electrical Engineers”, 1999 .
【23】Http://dragon.skku.ac.kr網站, 〝Plasma surface modification〞簡報資料。
【24】John Wiley and Sons, 〝Glow Discharge Processes〞, B. N. Chapman, 1980.
【25】M. Konuma, 〝Film Deposition by Plasma Techniques〞, Springer-Verlag,
1992.
【26】J. Va’vra, DESY worhshop, October 2, 2001.
【27】S. Gaur and G. Vergason, 〝Plasma Polymerization : Theory and Practice〞,
2000 Society of Vacuum Coaters 505/856-7188, 43rd Annual Technical
Conference Proceedings-Denver, April 15-20, (2000).
【28】廖素鈺,〝有害毒性氣體在磺酸化聚苯乙烯薄膜中傳送特性之研究〞,朝陽科技大學
博士論文( 2002 )。
【29】吳權吉,〝以反應性磁控濺鍍法製備矽化物氣體阻障層〞,私立中原大學碩士論文(
2005 )。
【30】R. Gonzalez-Luna, M. T. Rodrigo, C. Jimenez and J. M. Martinez-Duart,
〝Deposition of silicon oxinitride films from hexamethyldisilazane (HMDS)
by PECVD〞, Thin Solid Films, 317(1998), PP.347-350.
【31】G. Mcmaster and S. Soane, 〝Water sorption in epoxy thin films〞, IEEE
Transactions On Components, Hybrids. And Manufacturing Technology, VOL.
12, NO. 3, September 1989, PP.373-386.
【32】M. L. P. da Silva, I. H. Tan, A. P. Nascimento Filho, E. Galeazzo and D.
P. Jesus, “Use of plasma polymerized highly hydrophobic
hexamethyldisilazane (HMDS) films for sensor development”, Sensors and
Actuators, B 91 (2003) PP.362-369.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top