跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/22 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威佑
研究生(外文):Wei-yu Chen
論文名稱:偏壓磁控共濺鍍銅錫薄膜負極材料電化學特性之研究
論文名稱(外文):The electrochemical properties of bias co-sputtered Cu6Sn5 thin film anodes
指導教授:林昆明
指導教授(外文):Kun-ming Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:84
中文關鍵詞:雙靶共濺鍍陽極遮罩表面修飾Cu6Sn5
外文關鍵詞:negative biasco-sputteringsurface coatingCu6Sn5
相關次數:
  • 被引用被引用:1
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
隨著近年來各式電子產品對高能量密度及安全可靠度上的需求,鋰離子二次電池於性能設計上的精進與創新被受各界期待,而由傳統碳材負極構成之鋰離子二次電池於能源供應方面已不敷使用,故開發一高可逆電容量負極材料實為未來發展重點。
本研究選擇具高體積電容量、庫倫效率佳的銅錫介金屬合金作為薄膜電池負極材料,藉由雙靶磁控共濺鍍沉積Cu6Sn5薄膜負極,並導入一臨場負偏壓,現場調控薄膜表面型態及改變結晶特性,進而達到臨場改質(in-situ modification),成功地開發出高電容量及高循環能力之負極薄膜材料,並有效大幅度提升其薄膜電化學特性。研究中發現,在雙靶共濺鍍的電漿干擾及陽極遮罩作用下,減少了基座上的電流(離子通量),降低電漿能量及密度,促使銅錫原子不易發生孕核、晶粒成長,因而有極細小的奈米晶粒(~10nm);接著於基座導入一臨場負偏壓(0VDC ~150VDC),探討基座上電流與負偏壓之關聯性,暸解於負偏壓沉積下,電漿特性的不同。在電化學之研究中,將針對不同臨場負偏壓所造成薄膜表面型態的差異,對於Cu6Sn5薄膜電池在充放電循環(life time)下有何影響;在適當負偏壓100VDC的離子轟擊作用下,改善薄膜緻密性,造成部份相轉變和充放電機制,在長期充放電循環下,發揮極佳電化學特性;而過高負偏壓(150VDC)造成過強能量的離子轟擊,迫使薄膜產生相轉變,展現出高溫相之充放電行為;並針對體積變化率造成0VDC循環能力不佳的缺點,進行表面銅鍍層修飾,有效的緩衝體積變化的應力作用,展現了極佳循環能力,維持一穩定放電平台,於50次循環之後,仍有高達2360mAh/mL之體積電容量。
Cu6Sn5 thin film anodes were prepared by using magnetron co-sputtering technique. In-situ substrate bias was applied to modify the surface morphology and crystallography of thin films, resulting in different electrochemical properties. The thin films crystallinity can be well controlled under precise substrate bias. Films deposited without substrate bias showed -Cu6Sn5 phase, with nanosized particles on the surface. The bias induced ion bombardment has resulted in structural evolution. As a negative bias of 150VDC during deposition, an -Cu6Sn5 phase formed, which was then confirmed by postcycled x-ray diffraction spectra. The electrochemical properties of thin film anodes deposited under various conditions were measured and compared. The un-bias deposited anodes showed high discharge capacity but exhibited 50% capacity fading after 50 charge-discharge cycles. The 150VDC bias deposited anodes show the lower initial reversible capacity, which however was stable during cycling test. The Copper surface coating with 10nm was deposited on the 0VDC films, and the cycling properties of 0VDC thin film anodes were improved significantly.
中文摘要……………………………………..…………………...................I
英文摘要.......................................................................................................Ⅲ
總目錄……………………………………………………………………...Ⅳ
圖目錄……………………………………………………………………...Ⅵ
表目錄………………………………………….............................………..Ⅸ
第一章、緒論
1.1 薄膜電池概論……………………………………………………….….1
1.2 研究動機………………………………………….………………….…3
第二章、文獻回顧
2.1 鋰離子二次電池的起源與簡介………………………………………..5
  2.1.1 鋰電池....................………………………………………...……..5
2.1.2 鋰離子二次電池………………………………………...………..6
2.2 負極材料………………………………………………………………..9
2.2.1 石墨碳材………………………………………………...………..9
2.2.2 錫基負極材料………………………………………...……........12
2.2.3 鋰合金材料…………………………………………………...…16
第三章、實驗方法
3.1 實驗流程………………………………………………………………32
3.2 薄膜試片製備…………………………………………………………33
3.3 電漿診斷………………………………………………………………34
3.3.1 基座電流電壓之量測……………………………………...……34
3.4 材料分析與量測技術…………………………………………………35
3.4.1感應耦合電漿原子放射光譜儀(Inductively coupled plasma-atomic emission spectrometer)................................................35
3.4.2 低掠角X光繞射儀(Grazing Incidence X-ray Diffractometer) ...35
3.4.3 掃描式電子顯微鏡(Scanning Electron Microscope) …….…….36
3.4.4 薄膜厚度之量測…………………………………………..…….37
3.5 電池元件組裝與電化學分析………………………………………....37
3.5.1 負極之電極製作………………………………………………...37
3.5.2 鈕扣型電池之組裝……………………………………………...38
3.5.3 電池充放電性能測試…………………………………………...38
3.5.4 循環伏安測試…………………………………………………...39
第四章、實驗結果與討論
4.1 電漿量測………………………………………………………………45
4.1.1 基座電漿量測………………………………………………...…45
4.2 膜厚量測……………………………………………………….……...46
4.3 結晶結構………………………………………………………….…...47
4.3.1 基座負偏壓之影響……………………………………………...47
4.4 微結構與表面型態……………………………………………………48
4.4.1 負偏壓之表面型態…………………………………………...…48
4.5薄膜成份鑑定..........................................................................................50
4.6 銅錫負極薄膜之電化學行為…………………………………………51
4.6.1 充放電性質……………………………………………………….51
4.6.2 氧化還原反應………………………………………………..…...52
4.6.3 電池循環壽命…………………………………………………….53
4.7 銅錫薄膜負極之表面改質……………………………………............57
4.7.1 複合薄膜之結晶結構與表面型態………………………..….......57
4.7.2 複合薄膜之電化學行為…………………………………….........58
4.7.3 複合薄膜之循環壽命……………………………………….........59
第五章、結論……………………………………………………………….80
參考文獻……………………………………………...……………………82
[1] R. Koksbang, J. Barker, H. Shi and M. Y. Saidi, “Cathode materials for lithium rocking chair batteries “ Solid State Ionics, 84,1(1995).
[2] 洪為民,工業材料117 期,p. 54(1996)。
[3] 楊家諭,工業材料126 期,p. 115(1997)。
[4] T. Handa, S. Shoji, S.Ike, S. Takeda, and T. Sekiguchi, International Conference on Sloid-State Sensors and Actuators, Chicago, June, pp. 16–19 (1997).
[5] http://www.ssd.ornl.gov/Programs/BatteryWeb/Applications.html
[6] J. R. Dahn, et al. Carbon and graphites as substitutes for lithium anode. Industrial Chemistry Library Vol.5(ed. Pistoia.G.)
[7] G. X. Wang, L. Sun, D. H. Bradhurt, S.X. Dou, H. K. Liu, “Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling.” J. Alloys Compd., 299, L12, (2000).
[8] K.D. Kepler, J. T. Vaughey, M. M. Thackeray, “Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in intermetallic system” J. Power Sources, 81/82, 383, (1999).
[9] J. Wolfenstine, S. Campos, D. Foster, J. Read, W. K. Behl, “Nano-scale Cu6Sn5 anodes” J. Power Sources, 109, 230, (2002)
[10] Y. Xia, T. Sakai, T. Fujieda, M. Wada, H. Yoshinaga, “Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries.” J. Electrochem. Soc., 148, 471, (2001).
[11] S. D. Beattie, J. R. Dahn,”Single Bath, Pulsed Electrodeposition of Copper-Tin Alloy Negative Electrodes for Lithium-ion batteries.” J. Electrochem. Soc., 150, 894, (2003).
[12] Noriyuki Tamura, Ryuji Ohshita, Masahisa Fujimoto, Shin Fujitani, Maruo Kamino, Ikuo Yonezu, “Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes “ J. Power Sources 107 (2002) 48–55
[13] J. Hajek, French Patent, 8, p.10 (1949).
[14] D. Linden, “Handbook of Batteries and Fuel Cells”, McGraw-Hill Inc., Chap. 11, p.1–2 (1984).
[15] J. Tamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte” J. Power Source, 74, p.219–227 (1998).
[16] J. O. Besenhard , M. Hess and P. Komeda , Solid State Ionics , 40/41 , 525(1989)
[17] M. Lazzari and B. Scrosati , “A Cyclable Lithium Organic Electrolyte Cell.”
[18] P. Arora, R. E. White and M. Doyle, “Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries” J. Electrochem. Soc., 145,3647(1998).
[19] R. Yazami, J. Power Sources, 43, 39(1993).
[20] A. Mabuchi, K. Tokumitsu, H. Fujimoto and T. Kaush, J. Electrochem. Soc.,
142,1041 (1995).
[21] J. R. Dahn, T. Zheng, Y. Liu and J. S. Xue, Science, 270, 590(1995).
[22] R. Fong, U. V. Sacken and J. R. Dahn, J. Electrochem. Soc., 137, 2009 (1990).
[23] M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Advanced Materials, 10, p. 725 (1998).
[24] J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, “Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes “J. Power Sources, 54, p. 228 (1995).
[25] E. Peled, J. Electrochem. Soc., 126, p. 2047 (1979).
[26] H. Shi, J. Barker, M. Y. Saidi and R. Koksbang, “Structure and Lithium Intercalation Properties of Synthetic and Natural Graphite”, J. Electrochem. Soc.,143, 3466 (1996).
[27] 姚慶意、陳金銘, “鋰離子二次電池負極材料介紹”, 工業材料, 100, 57 (1996).
[28] 陳金銘, “高容量碳粉材料”, 工業材料, 133, 85 (1997).
[29] A. Mabuchi, K. Tokumitsu, H. Fujimoto and T. Kaush, J. Electrochem. Soc., 142,1041 (1995).
[30] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science, 276, p. 1395 (1997).
[31] I. A. Courtney and J. R. Dahn, “Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites”J. Electrochem. Soc., 144, p. 2045 (1997).
[32] M. Winter and J. O. Besenhard, ” Electrochemical lithiation of tin and tin-based intermetallics and composites” Electrochimica Acta, 45, 31 (1999).p. 31 (1999).
[33] T. Shodai, Y. Sakurai, and T. Suzuki, “Reaction mechanisms of Li2.6Co0.4N anode material “Solid State Ionics, 122, p. 85 (1999).
[34] F.M.Amanullah,K.J.Pratap,V.Hari Babu, Materials Scienceand Engineering B52,93(1998).
[35] J.C.Giuntini,W.Granier,J.V.Zanchetta,J.Mater.Sci.Lett.,9,1383(1990).
[36] H. Pink,L.Treitinger and L. Vite,Japanese Journal of applied
physics.19,No.3,513(1980)
[37] L.Bruno,C.Pijolat and R.Lalauze ,Sensors and ActuatorsB,18-19,195(1994).
[38] W.Liu, X.Huang, Z.Wang, H.Li,L.Chen, J.Electrochem.Soc., “Studies of Stannic Oxide as an Anode Material for Lithium-Ion Batteries”145, p.59(1998).
[39] R.Kanno,Y. Takeda, T Ichikawa, K. Nakanishi and O. Yamamoto,J. Power
Sources, 26,535(1989).
[40] J.M.Tarascon and D.Guyomard,J.Electrochem.Soc.,138,2864(1991).
[41] Z.X.Shu,R.S.McMillan and J.J.Murray, J. Electrochem. Soc.,140, 922(1993).
[42] R.Fong, U.Sack and J.R.Dahn, J. Electrochem. Soc., 137, No.7, 2009(1990).
[43] J.R.Dahn,R.Fong and M.J.Spoon, Phys. Rev., B42, 424(1990).
[44] X.Qiu, Q.Liu and L.Yang,Solid State,Ionics,60.351(1993).
[45] M. Mohri, N. Yanagisawa, Y. Tajima , H. Tankka, T. Mitate,S. Nakajima, Y. Yoshimoto M. Yoshida, T. Suzuki and H. Wada,J. Power Sources,26, 545(1989).
[46] A.Mabuchi, H.Fujimoto, K.Tokumitus and T.Kasuh, J. Electrochem. Soc., 142, 3049(1995).
[47] C.E.Lowell,J.Am.Ceram.Soc.,50,142(1967).
[48] J.S.Xue and J.R.Dahn,J.Electrochem.Soc.,142,3668 (1995).
[49] T.Zheng,Q.Zhong and J. R. Daha, J. Electrochem.Soc.,142,L211(1995).
[50] 工業材料130 期,108-109(1997).
[51] A.A. Bolzan, C. Fong,B. J.Kennedy and C. J.Howard, Acta Cryst.B53, 373 (1997).
[52] J. G. Zheng, X.Pan, M. Schweizer, U.Weimar W. Gopel, Mruhle, Journal of Materials Science 34, 2317(1996).
[53] Fuji Photo Film Co., Ltd., Euro. Pat. 0,651,450, A1(1995).
[54] J.Isidorsson, C.G. Granqvist, L. Haggstorm, and E.Nordstrom, J. Appl. Phys., 80, 2367(1996).
[55] B. Orel, U. Lavrenic-Stangar, and K. Kalcher. J. ElectronMater.,9,727(1980).
[56] T.Brousse,R. Retoux, U. Herterich, and D. M. Schleich, “Thin-Film Crystalline SnO2-Lithium Electrodes “J. Electrochem.Soc.,Vol.145, No. 1, (1998)
[57] R. A. Huggins, Electrochemical Society Proceedings Volume 97-18,1(1997).
[58] R.A. Huggins, “Lithium alloy negative electrodes “J. Power Sources 81/82, 13–19 (1999).
[59] J. Wang, I. D. Rasitrick and R. A. Huggins, J. Electrochem. Soc.133,457(1986).
[60] J. Yang, M. Winter, and J. O. Besenhard,” Small particle size multiphase Li-alloy anodes for lithium-ion-batteries” Solid State Ionics, 90, 281 (1996).
[61] K. D. Kepler, J. T. Vaughey, M. M. Thackeray, “LixCu6Sn5(0<x<13):An Intermetallic Insertion Electrode For Rechargeable Lithium Batteries” Electrochem. Solid-State Lett., 2, 307, (1999).
[62] K.-F. Chiu, H. C. Lin, K. M. Lin, T. Y. Lin, and D. T. Shieh, J. Electrochem. Soc. 153, A920 (2006).
[63] JCPDS card no. 04-0673, International Center for Diffraction Data, Swarthmore, PA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王振德(1996)。國民中小學資優教育課程與教學實況調查研究。特殊教育研究學刊,14,207-227。
2. [28] 陳金銘, “高容量碳粉材料”, 工業材料, 133, 85 (1997).
3. [27] 姚慶意、陳金銘, “鋰離子二次電池負極材料介紹”, 工業材料, 100, 57 (1996).
4. 吳武典(1983)。我國國中資優教育之評鑑。資優教育季刊,10期,1-9頁。
5. 吳武典(2000)。我國資優教育政策分析與檢討。載於中華資優教育學會主編:資優教育的全方位發展,41-73頁。台北:心理。
6. 吳武典(2003)。三十年來的臺灣資優教育。資優教育季刊,88,1-5。
7. 吳美美(2004)。資訊素養與媒體素養-數位時代的素養與素養教育。臺灣教育,692,9-14。
8. 呂金燮(2002)。我國國小資優教育課程的發展與調適。資優教育研究,2(2),1-22。
9. 林天祐(2005)。教師行動研究準則:普及化的基石。學校行政雙月刊,35,1-16。
10. 林作逸(2005)。未來的優質公民:從教師觀點出發談新世紀的品格教育。國小特殊教育,40,30-34。
11. 連惠敏(2001)。2001年電視收視行為大調查。廣電人,84,10-14。
12. 陳淑敏(2002)。媒體素養(media literacy)的理論分析。教育資料與研究,47,100-105。
13. 陳雪麗(2005)。非線性剪輯、電影文本重敘與職前教師批判思考。教學科技與媒體,71,30-46。
14. 陳膺宇(1994)。批判性思考運動初探。國立政治大學學報,69(上),141-171。
15. 陳麗華、李涵鈺、 林陳涌(2004)。國內批判思考測驗工具及其應用之分析。課程與教學季刊,7(2),1-24。