跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/03/01 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳昆秦
研究生(外文):Kun-chin Wu
論文名稱:鈦鉻釩系儲氫合金吸放氫特性與結構之研究
論文名稱(外文):A study on the characteristics and structures of TiCrV hydrogen storage alloys
指導教授:林昆明
指導教授(外文):Kun-ming Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:107
中文關鍵詞:Ti0.8Cr1.2VBCC型儲氫合金TiCrV
外文關鍵詞:BCC phaseTiCrVTi0.8Cr1.2Vhydrogen storage alloys
相關次數:
  • 被引用被引用:1
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
儲氫合金之研製是目前極力開發之儲氫新技術。BCC型V系合金因具有室溫吸氫及高儲氫量等優點而備受重視。因Ti/Cr比會影響合金之特性,Ti愈多會有較大吸氫量,但放氫效果差,Cr愈多則有助於放氫,但吸氫量不佳,故本研究以TiCrV與Ti0.8Cr1.2V合金作為儲氫材料,針對儲氫特性、吸放氫行為與熱處理效應等作深入之探討。
兩合金以真空電弧重熔法製備,可得到無Laves phase之BCC結構。TiCrV合金在25℃時比Ti0.8Cr1.2V有較大吸氫量,且隨著放氫溫度提高兩合金的循環吸氫量均有改善。在25℃時,TiCrV合金之PCT曲線無平台區,且放氫效果差;Ti0.8Cr1.2V合金則有明顯平台區,平台壓約0.2~0.4MPa,不過平台斜率大且遲滯大。由吸放氫行為測試,兩合金之吸氫過程是由氫固溶飽和後再形成TiCr1.8H5.3與TiH2兩種氫化物,合金在氫固溶狀態時放氫效果較差,形成氫化物的放氫效果相對較好,且氫化物會隨著吸放氫次數增加而累積,導致吸氫量之下降。
TiCrV合金經1300℃、10min熱處理水淬後吸氫量減少;Ti0.8Cr1.2V經1300℃、10min熱處理水淬後吸氫量則增加,且兩合金之析出相會隨熱處理時間增加而成長。
The storage and transportation of hydrogen via the so called hydrogen storage alloys is a newly developed technique. V-based alloys with BCC structure have attracted much attention because they can absorb hydrogen at room temperature and have high capacity of hydrogen. The ratio of Ti/Cr has great effects upon the properties of the alloys with higher capacity but worse desorption effect for Ti-rich alloys and lower capacity but better desorption effect for Cr-rich alloys. TiCrV and Ti0.8Cr1.2V alloys have been selected as the materials in this study. The characteristics of hydrogen absorption/desroption and the effects of heat treatment were investigated.
The alloys prepared by vacuum arc remelting have a BCC structure without Laves phase. TiCrV alloy has higher hydrogen capacity than Ti0.8Cr1.2V at 25℃. The cyclic capacity will be improved with increasing the temperature of desorption. At 25℃, it has no plateau region in the PCT curve of the TiCrV alloy. However, it exhibits a pronounced plateau region with a pressure of 0.2~0.4MPa but higher slope of plateau and hysteresis for Ti0.8Cr1.2V. The absorption process of the alloys is to form a saturated solid solution, and then to form TiCr1.8H5.3 and TiH2 hydrides. The desorption effect of the alloys is worse at the state of solid solution, but is better at the state of hydrides. The hydrogen capacity decreases with increasing the cycles of absorption/desorption due to the accumulation of stabilized hydrides.
After the heat treatment of 1300℃ for 10min and then quenched into water, the hydrogen capacity decreases for TiCrV but increases for Ti0.8Cr1.2V due to the difference of the lattice constants.
總 目 錄
中文摘要……………………………………………i
英文摘要……………………………………………ii
總目錄………………………………………………iii
圖目錄………………………………………………v
表目錄………………………………………………ix

第一章 前言…………………………………………1
第二章 理論基礎與文獻回顧………………………3
2.1 儲氫合金簡介……………………………… 3
2.2 儲氫合金的種類…………………………… 4
2.2.1 AB5型儲氫合金…………………………6
2.2.2 AB型儲氫合金………………………… 9
2.2.3 AB2型儲氫合金…………………………11
2.2.4 A2B型儲氫合金…………………………13
2.2.5 BCC固溶體型儲氫合金…………………16
2.3 儲氫合金吸放氫特性之概述……………… 20
2.3.1 儲氫合金吸放氫動力學性質………… 20
2.3.2 儲氫合金吸放氫熱力學性質………… 23
2.3.3 van’t Hoff 方程式………………… 25
2.3.4 壓力-組成-溫度曲線(PCT曲線)……27
2.4 完整的儲氫合金要求……………………… 30
2.5 影響合金性能的因素……………………… 32
2.6 儲氫合金的應用…………………………… 34
2.7 儲氫合金的未來發展……………………… 42
第三章 實驗步驟與方法……………………………44
3.1 實驗流程圖………………………………… 44
3.2 合金粉末製備……………………………… 45
3.3 基本性質量測……………………………… 46
3.3.1 ICP-AES成份分析………………………46
3.3.2 X-ray繞射分析…………………………46
3.3.3 表面形態觀測………………………… 46
3.4 儲氫性質量測……………………………… 47
3.4.1 活化…………………………………… 47
3.4.2 吸氫曲線……………………………… 49
3.4.3 PCT曲線…………………………………49
3.4.4 吸放氫行為量測……………………… 51
第四章 結果與討論…………………………………52
4.1合金之基本性質分析…………………………52
4.2合金之吸放氫特性分析………………………57
4.2.1吸氫曲線量測……………………………57
4.2.2放氫溫度之影響(N=1, 2)………………58
4.2.3循環吸放氫特性分析……………………59
4.2.4 PCT曲線量測……………………………62
4.3合金吸放氫狀態下之結構分析………………77
4.3.1不同吸氫量………………………………77
4.3.2不同吸放氫次數…………………………81
4.4 熱處理對合金特性之影響………………… 90
第五章 結論…………………………………………103
參考文獻…………………………………………… 104
【1】Carolyn C. Elam, Catherine E. Gregoire Padro, Gary Sandrock, Andreas Luzzi, Peter Lindblad, Elisabet Fjermestad Hagen, International Journal of Hydrogen Energy 28 (2003) 601–607.
【2】廖世傑, “工業材料雜誌”, 190 (2002) 139.
【3】H. Zijlstra, and F. F. Westendorp, Sol. State Comm., 7 (1969) 857.
【4】大角泰章, “水素吸藏合金”, (1993) 26.
【5】H. Zijlstra, and F. F. Westendorp, Materials Science, 11(6), (1975) 103–104.
【6】J. H. N. van Vucht, F. A. Kuijpers, and H. C. A. M. Bruning, Philips Res. Repts., 25 (1970) 133.
【7】F. A. Kuijpers, Philips Res. Suppl., 28 (1973) 1.
【8】A. R. Miedema, R. Boom, and F. R. Deboer, J. Less-Common Met., 41 (1975) 109.
【9】Y. Osumi, H. Suzuki, A. Kato, M. Nakane, and Y. Miyake, J. Less-Common Met., 24 (1978) 125.
【10】林美姿, “材料與社會”, 60 (1991) 27.
【11】沈西湖, 任學佑, 世界有色金屬, 9(1998)11.
【12】李全安, 陳云貴, 王麗華, 涂銘旌, 材料開發與應用, 3 (1999) 33.
【13】J. J.G. Willems, Philips J. Res. Suppl. , 39(1984)10.
【14】大角泰章, “水素吸藏合金”, (1993) 194.
【15】M. Nogami, K. Moriwaki, N. Furukawa, Proc. 3rd Int. Rechargeable Battery Semin. , Deerfield Beach, FL, (1990).
【16】P. H. L. Notten, P. Hokkeling, J. Electrochem. Soc., 138 (1991) 1877.
【17】大角泰章, “水素吸藏合金”, (1993) 227.
【18】大角泰章, “水素吸藏合金”, (1993) 237-239.
【19】大角泰章, “水素吸藏合金”, (1993) 240.
【20】李世民, 國立清華大學, 博士論文, (1996).
【21】大角泰章, “水素吸藏合金”, (1993) 26.
【22】D. Y. Yan, G. Sandrock, S. Suda, J. Alloys and Compounds, 216 (1994) 56.
【23】O. Bernauer, J. Topler, D. Noreus, R. Hempelmann, D. Richter, Int. Hydrogen Energy, 14 (1989) 187.
【24】K. Girgis, R. W. Cahn, and P. Haasen, “Physical Matallurgy”, 3rd edit., Amsterdam, New York, (1983) 243.
【25】大角泰章, “水素吸藏合金”, (1993) 301.
【26】Jong-Man Park, Jal-Young Lee, J. Less-Common Met., 167 (1991) 245.
【27】大角泰章, “水素吸藏合金”, (1993) 159.
【28】大角泰章, “水素吸藏合金”, (1993) 155.
【29】E. Akiba and H. Iba, Intermetallics, 6, 461-470, 1998
【30】大角泰章, “新版水素吸藏合金”, (1999) 344.
【31】Takuya Tamura*, Takashi Kazumi, Atsunori Kamegawa, Hitoshi Takamura, Masuo Okada, J. Alloys Comp., 356-357 (2003) 505-509.
【32】Takuy Tamura, Atsunori Kamegawa, Hitoshi Takamura and Masuo Okada, Materials Transactions, 42(9), 2001, 1862-1865
【33】G. E. Fernández, D. Rodríguez, and G. Meyer, Int. J. Hydrogen Energy, 23 (1998) 1193.
【34】M. Martin, C. Gommel, C. Borkhart, E. Fromm, J. Alloys Comp., 238 (1996) 193.
【35】林宗賢,國立清華大學, 碩士論文, (1999).
【36】T. Haraki, N. Inomata, H. Uchida, J. Alloys Comp., 293-295 (1999) 407.
【37】T. Imoto, K. Satoh, K. Nishimura, T. Yonesaki, S. Fujitani, I. Yonezu, J. Alloys Comp., 223 (1995) 60.
【38】S. Corr, Y. Gotoh, H. Sakaguchi, D. Fruchart, G.-Y Adachi, J. Alloys Comp., 255 (1997) 117.
【39】L. Schlapbach, in: L. Schlapbach(Ed.), Topics in Applied Physics, Hydrogen in Intermetallic Compounds Ⅰ, Vol. Vol. 63, Springer, Berlin, (1988) 2.
【40】G. Sandrock, J. Alloys Comp., 293-295 (1999) 877.
【41】C. E. Lundin, F. E. Lynch, in Record of the 10th Intersociety Energy Conversion Engineering Conference, (Inst. of Electrical and Electronics Engineers, New York 1975) 1380.
【42】J. J. Reilly, R. H. Wiswall, Inorg. Chem., 13 (1974) 218.
【43】J. J. Reilly, R. H. Wiswall, Inorg. Chem., 7 (1968) 2254.
【44】G. D. Sandrock, Proc. 2nd World Hydrogen Energy Conf. (Pergamon, Oxford 1978) 1625.
【45】G. D. Sandrock, “The Metallurgy and Production of Rechargeable Hydrides”.
【46】Q. A. Zhang, Y. Q. Lei, X. G. Yang, Y. L. Du, Q. D. Wang, J. Alloys Comp., 305 (2000) 125.
【47】J. N. Armor, Chemtech., (1992) 2.
【48】H. Okamoto, Alloy Phase Diagrams, ASM, (1992) 56.
【49】D. K. Kuhn, H. H. Johnson, Acta Metall., 39 (1991) 85.
【50】G. Sandrock, G. Thomas, IEA/DOE/SNL Hydride Databases, Internet URL http://hydpark.ca.sandia.gov.
【51】伊藤邦夫, 大塚和弘, 神也公行, 小野修一郎, “功能性金屬材料” , 科學出版社, (1990).
【52】A. Anani, A. Visintin, K. Petrov et al., J. Power Sources, 47 (1994) 261.
【53】L.Y. Zhang, J. Alloys and Compounds, 293-295 (1999) 621.
【54】R. Li, J.M. Wu, X.L. Wang, J. Alloys and Compounds, 311 (2000) 40.
【55】Sakai T, Miyamura H, Kuriyama N et al., Z. Phys. Chem., 183 (1994) 333.
【56】K. Yasuda, J. Alloys and Compounds, 253-254 (1997) 621.
【57】S.E. Hsu, M.T. Yeh, I.C. Hsu, J.Y. Wang, V. Beibutian, J. Alloys and Compounds, 293-295 (1999) 658.
【58】Q.A. Zhang, Y.Q. Lei, X.G. Yang, Y.L. Du, Q.D. Wang, J. Alloys and Compounds, 305(2000)125.
【59】S.M. Lee, J.S. Yu, H. Lee, K.J. Jang, J.Y. Lee, J. Alloys and Compounds, 293-295 (1999) 601.
【60】H. Nakamura, Y. Nakamura, S. Fujitani, I. Yonezu, J. Alloys and Compounds, 218 (1995) 216.
【61】C.J. Li, X.L. Wang, J. Alloys and Compounds, 274 (1998) 278.
【62】W.K. Hu, D.M. Kim, S.W. Jeon, J.Y. Lee, J. Alloys and Compounds, 270 (1998) 255.
【63】Jin Hongmei, Li Guoxun, Zhou Chuanhua, Wang Ruikun, J. Power Sources, 77 (1999) 123.
【64】J.H. Jung, S.M. Lee, D.M. Kim, K.J. Jang, J.Y. Lee, J. Alloys and Compounds, 266 (1998) 271.
【65】J.H. Jung, H.H. lee, D.M. Kim, K.J. Jang, J.Y. Lee, J. Alloys and Compounds, 266 (1998) 266.
【66】Seong Sik Moon, Kee Suk Nahm, J. Alloys and Compounds, 224 (1995) 140.
【67】C.N. Park, M.H. Chang, J. Alloys and Compounds, 231 (1995) 846.
【68】H.H. Uchida, K. Moriai, K. Aoyama, H. Kondo, H. Uchida, J. Alloys and Compounds, 253-254 (1997) 525.
【69】H.H. Uchida, Y. Ozu, K. Suzuki, S. Kubo, A. Yoshizawa, J. Alloys and Compounds, 293-295 (1999) 369.
【70】Y. Li, L.J. jiang, Z. Huang, F. Zhan, B.R. Wu, Z.H. Xia, Y.J. Qiao, X.Y. Wei, G.R. Qing, X.X. Yuan, J. Alloys and Compounds, 293-295 (1999) 687.
【71】Hongge Pan, Yun Chen, Chunsheng Wang, Xinhua Wang, Changpin Chen, Qidong Wang, J. Alloys and Compounds, 293-295 (1999) 680.
【72】M.S. Wu, H.R. Wu, Y.Y. Wang, C.C. Wan, J. Alloys and Compounds, 302 (2000) 248.
【73】H. Uchida, K. Yamashita, T. Tabata, H.H. Uchida, M. Iwase, Y. Katoh, J. Alloys and Compounds, 293-295 (1999) 751.
【74】T. Imoto, K. Kato, N. Higashiyama, M. Kimoto, Y. Itoh, K. Nishio, J. Alloys and Compounds, 285 (1999) 272.
【75】T. Imoto, K. Kato, N. Higashiyama, M. Kimoto, Y. Itoh, K. Nishio, J. Alloys and Compounds, 282 (1999) 274.
【76】Z.P. Li, E. Higuchi, B.H. Liu, S. Suda, J. Alloys and Compounds, 293-295 (1999) 593.
【77】B.H. Liu, Z.P. Li, E. Higuchi, S. Suda, J. Alloys and Compounds, 293-295 (1999) 702.
【78】X.P. Gao, Y.M. Sun, E. Higuchi, E. Toyoda, S. Suda, J. Alloys and Compounds, 293-295 (1999) 707.
【79】Joseph Bloch, Moshe H. Mintz, J. Alloys and Compounds, 253-254 (1997) 529-541.
【80】S-W Cho , C-S Han , C-N Park , Etsuo Akibab, J. Alloys and Compounds, 288 (1999) 294-298.
【81】M. Uno, K. Takahashi, T. Maruyama, H. Muta, S. Yamanaka, J. Alloys and Compounds, 366 (2004) 213-216.
【82】T. Kabutomori, H. Takeda, Y. Wakisaka, K.Ohnishi, J. Alloys and Compounds, 231 (1995) 528-532.
【83】黃振賢,機械材料,(2002),366.
【84】周宏澤, 逢甲大學, 碩士論文, (2001).
【85】Huang Tazhong, Wu Zhu, Xia Baojia, Huang Tiesheng, Materials chemistry and physics, 93 (2005) 544-547.
【86】J. Hout, S. Bouaricha, S. Boily, J.-P. Dodelet, D. Guay and R. Schulz, Increase of specific surface area of metal hydrides by lixivation , J. Alloys and Compounds, 266(1998)307.
【87】X.B. Yu, Z. Wu, N.X. Xu , Physica B, 344 (2004), 456-461.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top