跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 07:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹惟翔
研究生(外文):Wei-hsiang Chan
論文名稱:奈米氧化鐵粉之無電鍍表面改質研究
論文名稱(外文):Surface Modification of Nanocrystalline Iron Oxide Powders by Electroless Plating
指導教授:林中魁
指導教授(外文):Chung-kwei Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:無電鍍氣相凝結法氧化鐵磁性材料
外文關鍵詞:iron oxideelectroless platingmagnetic materialgas condensation technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氣相凝結法在不同氧分壓下(50、100、150 mbar)生成奈米氧化鐵粉,並將所得粉體進行無電鍍鎳處理;此外,也選用商用奈米氧化鐵粉進行相同無電鍍鎳處理,做為實驗對照組。研究過程所使用之奈米氧化鐵或其改質粉體以X光繞射分析、穿透式電子顯微鏡、熱重分析儀、同步幅射X光與磁性檢測等分析技術進行其相關性質檢測。
實驗結果顯示,氣相凝結法生成奈米氧化鐵粉末內含有Fe及γ-Fe2O3相,由TEM觀察粉體型態發現奈米氧化鐵粉末,由表面開始氧化,且容易團聚為鏈狀,150 mbar氧氣氛下所得粉體,氧化最均勻;由X光吸收光譜分析發現150 mbar氧氣氛所得之γ-Fe2O3粉體延伸微精細結構訊號明顯高於氧含量50及100 mbar,顯示其氧化程度較為完全,熱重分析結果顯示,氣凝粉體在溫度100℃時,Fe轉變至γ-Fe2O3,而當溫度達到400℃時,γ-Fe2O3相再轉換成α-Fe2O3相。無電鍍鎳處理後之氧化鐵粉,在pH值6之酸性環境下析鍍30分鐘披覆性較佳,但pH值為8時,無電鍍過程中鎳離子還原效果則最佳。
氣凝合成氧化鐵粉保磁力較佳,Hc值為458.63 Oe。經無電鍍鎳處理後,pH值控制在8時,由於還原成鎳金屬效果最佳,所得到的Ms值為74.51emu/g 。
In the present study, nanocrystalline iron oxide powders were prepared by an inert gas condensation technique under different oxygen partial pressure, i.e., 50, 100, and 150 mbar, respectively. Surface modification of nanocrystalline iron oxide powders and commercial available nanocrystalline iron powders was preformed by electroless nickel plating. The original and modified powders where characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, and synchrotron X-ray absorption techniques.
The experimental results showed that nanocrystalline iron oxide powders prepared by gas condensation technique exhibit a mixture of Fe and γ-Fe2O3 phase. TEM observation revealed that oxidation began from the surface of the gas-condensed iron powders. The amount of oxidation increased with increasing oxygen partial pressure and was confirmed by synchrotron X-ray absorption examination. Thermal analysis showed that Fe transformed intoγ-Fe2O3 at 100 oC, and further transformed into α-Fe2O3 at 400 oC. The iron oxide powders can be modified by electroless nickel plating in a solution with ph value ranged from 6 to 8.
The coercivity of the nanocrystalline iron oxide powders as-prepared by gas-condensation technique was 458.63 Oe. After electroless nickel plating in a solution with ph=8, the saturated magnetization (Ms) was 74.51 emu/g.
中文摘要 I
Abstract II
總目錄 IV
表目錄 VII
圖目錄 VIII
第一章 前言 1
第二章 文獻回顧 3
2-1 奈米粉末的合成法 3
2-1-1 物理方法 3
2-1-2氣相凝結合成法原理及製程參數 4
2-1-3 化學方法 8
2-2 奈米複合粉體之合成 10
2-2-1 奈米複合粉體的組成與結構特性 10
2-2-2 奈米複合粉末的類型 12
2-3 奈米微粒之磁特性 13
2-3-1 奈米粒子與磁矩的關係 13
2-3-2 鐵氧化物之構造與特性 14
2-4 無電鍍鎳原理 17
2-4-1 無電鍍鎳的組成與特性 18
2-4-2 無電鍍鎳的反應機構 20
2-4-3無電鍍的前處理特性 21
2-5 鎳磷的添加對鐵粉性質的影響 22
第三章 實驗步驟及方法 25
3-1 氣凝合成法合成奈米氧化鐵粉 25
3-2 奈米氧化鐵粉之無電鍍鎳改質 28
3-3 粉末特性分析 31
3-3-1 X光繞射分析 31
3-3-2 氧化鐵粉體熱重損失分析 31
3-3-3 穿透式電子顯微鏡觀察 31
3-3-4 X光吸收光譜分析 32
3-3-5 VSM磁性檢測 33
第四章 結果與討論 34
4-1 氣凝奈米氧化鐵粉之合成與分析 34
4-1-1 氣凝粉體XRD分析 34
4-1-2 氧化鐵粉TEM粒徑分析與形貌觀察 36
4-1-3 氣凝合成之氧化鐵粉TGA分析 38
4-1-4 In Situ加熱繞射分析 40
4-1-5 X光吸收光譜分析 44
4-2無電鍍鎳改質之奈米氧化鐵粉分析 49
4-2-1 改質粉末XRD分析 49
4-2-2 改質粉末之TEM / EDS分析 54
4-2-3 改質粉末之X光吸收光譜分析 64
4-2-4 VSM磁性分析 69
第五章 結論 76
參考文獻 77
1.K.K. Fung, Boxiong Qin, and X.X. Zhang,“Passivation of α-Fe nanoparticle by epitaxial γ-Fe2O3 shell”, Materials Science and Engineering, 286 (2000) 135-138.
2.A. Brenner, G. Riddell, J.Res. Nat. Bur. Std., 37 (1946) p.31.
3.J. C. Ulicny and A. M. Mance ,“Evaluation of Electroless Nickel Surface Treatment for Iron Powder used in MR Fluids”, Material. Sci. and Engineering , 369 (2004) 309-313.
4.蕭敏佑,“鐵鎳複合粉之金屬射出成型研究”,台灣大學材料科學與工程研究所碩士論文,1992。
5.K. Krishnaveni, T.S.N. Sankara Narayanan, and S.K. Seshadri, “Electroless Ni-B Coating : Preparation and Evaluation of Hardness and wear resistance”, Surface & Coatings Technology, 190 (2005) 115-121.
6.C.A. Loto,“Electroless nickel plating of iron powders”, J. Metal. , 39 (1987) 36.
7.C. Suryanarayana, Prog. Mater. Sci., 45 (2001) 1.
8.L. Dimesso, G. Miehe, H. Fuess, and H. Hahn,“Preparation of nanostructured granular Ag–Co and Ag–Fe alloys by gas flow condensation technique”, Journal of Magnetism and Magnetic Materials, 191 (1999) 162-168.
9.N. H. Hai, R. Lemoine and S. Remboldt, M. Strand, J. E. Shield, D. Schmitter, R. H. Kraus, J. M. Espy, and D. L. Leslie-Pelecky,“Iron and Cobalt-based magnetic fluids produced by inert gas condensation”, Journal of Magnetism and Magnetic Materials, 293 (2005) 75-79.
10.G.E. Fougere, J.R. Weertman, and R.W. Siegel,“Processing and Mechanical Behavior of Nanocrystalline Fe”, Nanostructured Materials, 5 (1995) 127-134.
11.A. Djekoun, B. Bouzabata, S. Alleg, J.M. Greneche, and A. Otmani, “Synthesis and Morphological Characterization of Nanocrystalline Powders Obtained by A Gas Condensation Method”, Ann. Chim. Sci. Mat, 23 (1998) 557-562.
12.F. Ye, M.C Yang, X.K. Sun, and W.D. Wei, “The Formation of Ti-Fe Nanoparticles by Gas Condensation Method”, NanoStruetur Materiab, 9 (1997) 113-116.
13.K.Y. Eun, J.K. Park, J.H. Kim, M.Y. Hur, S. Anders, and T. Stammler, “Characterization of Manganese Oxide powder processed by Gas Condesnsation Method”.
14.C. Baker, S. Ismat Shaha, and S.K. Hasanain, “Magnetic behavior of iron and iron-oxide nanoparticle/polymer composites”, Journal of Magnetism and Magnetic Materials, 280 (2004) 412-418.
15.Y.C. Zhang, H. Wang, B. Wang, H. Yan, A. Ahniyaz, and M. Toshimura,“Low Temperature Synthesis of Nanocrystalline Li4Mn5O12 by a hydrothermal method”, Mater. Res. Bull., 37 (2002) 1411.
16.X.Z. Ding and X.H. Liu, Mater. Sci. Eng.,“Synthesis and Microstructure Control of Nanocrystalline Titania Powders via a Sol-Gel process”, Mater. Sci. Eng., 224 (1997) 210.
17.高濂、孫靜、劉陽橋 主編,“奈米粉體的分散及表面改性”,五南,2005。
18.徐國財、張立德 編著,“奈米複合材料”,五南,2004。
19.李風生、楊毅,“納米-微米複合技術及應用”,國防工業出版社,2002。
20.G. Economos,“Magnetic Ceramics: I, General Methods of Magnetic Ferrite Preparation”, Journal of the American Ceramic Society, 38 [7] (1955) 241-244.
21.Y.K. Rao, “Stoichiometry and Thermodynamics of Metallurgical Processes”, Library of Congress Cataloging in Publication Data.1985.
22.G.O. Mallory and J.B. Hajdu,“The Fundamental Aspects of Electroless Nickel Plating”, Electroless Plating : Fundamentals and Applications, AESF, (1990) 3.
23.周孟鋒,“複合金屬粉末之製備與應用”,逢甲大學材料科學研究所碩士論文,2002。
24.李宁、袁國傳、黎德育、李銘華主編,“化學鍍鎳基合金理論與技術”,哈爾濱工業大學,2000。
25.R. Paul, P. Buisson, and N. Joseph,“Catalytic Activity of Nickel Borides Raymond Paul”, Ind. Eng. Chem.; 44 (1952) 1006-1010.
26.Glenn O., Malloy Juan B., and Hajdu Ediors, “Electroless Plating: Fundamentals And Applications”, (1990).
27.L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, and J.L.S. Wang, “Decoration of activated carbon nanotubes with copper and nickel”, Carbon, 38 (2000) 363–372.
28.ASTM B656-86, “Standard Guide for Autocatalytic Nickel-Phosphorus Deposits on Metals for Engineering Use.”
29.ASTM B322-68,“Standard Practice for Cleaning Metals Prior to Electroplating.”
30.X. Qu, S. Gowri, and J.A. Lund, “Sintering behavior and strength of Fe-Si-P compacts”, J.Powder Metal, 27 (1991) 9-13.
31.J. Kacamar and B. Wehlinski, “Influence of Processing Parameters on magnetic Properties of Fe-0.8P Sintered materials”, Powder Metall, 27 (1984) 9.
32.B. Weglinski and J. Kaczmar, “Effect of Fe3P Addition on Magnetic Properties and Structure of Sintered iron”, Powder Metall., 23 (1980) 210.
33.H. Zhang and R.M. German, “The Role of Nickel in Iron Powder Injection Molding”, Int. J. Powder Metall., 27 (1991) 249.
34.T.Y. Chan, and S.T. Lin, “Sintering of Elemental Carbonyl Iron, and Carbonyl Nickel Powder Mixtures”, J. Mater. Sci., 32 (1997) 1963.
35.G.Y. Chin, L.L. Harner, M.F. Littmann, and J.W. Shilling, ibid 597.
36.G. C. Kuczynski and B. H. Alexander, “Sylvania Electric Products”, J. Appl. Phys., 22 (1951) 344.
37.T.Y. Chan and S.T. Lin, “Injection Molding of Fe-Ni-P Composite Powders prepare by Electroless Nickel Plating and Magnetic Properties od the Sintered Alloys”, J. Mater. Proc. Tech., 89-90 (1999) 165.
38.T.Y. Chan and S.T. Lin, “Enhanced Sintering of an Fe-Ni-P Coated Composite Powder Prepared by Electroless Nickel Plating”, J. Mater. Eng. Perfor., 6 (1997) 628.
39.K. Kimoto, Y. Kamiya, M. Nonoyama, and R. Uyeda, “An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure”, Jpn. J. Appl. Phys., 2 (1963) 702-713.
40.孫立杰,“水溶液中溶氧對金屬腐蝕的影響”,逢甲大學材料科學研究所碩士論文,2004。
41.H. Winick and S. Doniach, “Synchrotron Radiation Research”, Plenum press, New Tork, 1980.
42.汪建民,“材料分析”,中國材料科學學會,新竹,1998。
43.S.T. Wong, J.F. Lee, S. Cheng, and C.Y. Mou, “In-situ study of MCM-41-supported iron oxide catalysts by XANES and EXAFS”, Applied Catalysis A: General, 198 (2000) 115-126.
44.C.H. Shen, R. Gunakaram, R.S. Liu and H.S. Sheub, J. Chem. Soc., Dalton Trans., (2001) 37.
45.陳威倩,“以γ- α-Fe2O3相變機制製作alpha-Fe2O3微粒”,成功大學資源工程研究所碩士論文,2001.
46.Z.Y. Wu, S. Hota, F. Jollet, M Pollak, M. Gautier-Soyer, and C.R. Natoli, “Characterization of Iron Oxide by X-ray Absorption at the Oxygen K edge using a Full Multiple-Scattering Approach”, Baysical Review, 55 (1997) 2570-2577.
47.E.C. Todd, D.M. Sherman, and J.A. Purton, “Surface Oxidation of Chalcopyrite (CuFeS2) under Ambient Atomsopheric and Aqueous (pH 2-10) Conditions: Cu, Fe L- and O K-edge X-ray Spectroscopy”, Geochimica et. Cosmochimica Acta, 67 [12] (2003) 2137-2146.
48.G.S. Pokrovski, J. Schott, F. Farges, and J. L. Hazemann, “Iron (III)-Silica Interactions in Aqueous Solution: Insight from X-ray Absorption Fine Structure Spectroscopy”,Geochimica et. Cosmochimica Acta, 67 [19] (2003) 3359-3573.
49.C.L. Chang, C.L. Chen, C.L. Done, G. Chern, J.F. Lee, and L.Y. Jang, “X-ray Absorption near Edge structure studies of Fe1-xNixOy thin film”, J. Electron Sectroscopy, 114-116 (2001) 545-548.
50.S.T. Wong, J.F. Lee, S. Cheng, and C.Y. Mou, “In-Situ study of MCM-41-supported Iron Oxide Catalysts by XANES and EXAFS”,Applied Catalysis A: General, 198 (2000) 115-126.
51.鄭正雄,“無電解鍍鎳之研討”,金屬表面技術雜誌,第47期,第33-44頁,1983。
52.K. Hagiwara, J. Watanabe, and H. Honma, “Preparation of Anisotropic Conductive Particles By Electroless Plating”, Plat. and Surf. Fin., 84 (1997) 74.
53.A. Malecki, and A. Micek-Ilnicka, “Electroless Nickel Plating From Acid Bath”, Surface and Coatings Technology, 123 (2000) 72.
54.P. Finetti, M.J. Scantlebury, R. McGrath, F. Borgatti, M. Sambi, L. Zaratin, and G. Granozzi, “Electronic Structure Investigation of the Room Temperature Coadsorption of Oxygen and Potassium on Ni(100): from Oxygen Submonolayer Coverage to Saturated NiO/Ni(100) via an Ni(100)-(3x3)-(K+O) Structuer”, Surface Science, 461 (2000) 240-254.
55.Y. Uchimoto, H. Sawada, and T. Yao, “Changes in Electronic Structure by Li ion Deintercalation in LiNiO2 from Nickel L-edge and O K-edge XANES”,J. Powder Sources, 97-98 (2001) 326-327.
56.C.L. Changa, G. Chernb, C.L. Chena, H.H. Hsieha, C.L. Donga, W.F. Ponga, C.H. Chaoc, H.C. Chienc, and S.L. Changc, “Electronic States and Structural Charaterization in Single-Crystal Fe-Ni-O Alloy Thin Film Grown by Molecular Beam Epitaxy”, Solid State Communications 109 (1999) 599-604.
57.L.A. Monotoro, M. Abbate, E.C. Almeida, and J.M. Rosolen, “Electronic Structure of the Transition Metal Ions in LiCoO2 LiNiO2 and LiCo0.5Ni0.5O2”,Chemical Physics Letters, 309 (1999) 14-18.
58.K.W. Nam, W.S. Yoon, and K.B. Kim, “X-ray Absorption Spectroscopy Studies of Nickel Oxide Thin Film Electrodes for Supercapacitors”, Electrochimica Acta, 47 (2002) 3201-3209.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top