跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 00:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳欣
研究生(外文):Chia-hsin Li
論文名稱:二氧化鈦粉體表面吸附鎳之改質研究
論文名稱(外文):Surface Modification of Titanium Dioxide Powders by Ni Doping
指導教授:林中魁
指導教授(外文):Chung-kwei Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:光催化強金屬-載體效應二氧化鈦含浸法
外文關鍵詞:strong-metal support interactionphotocatalyticnickelimpregnationtitanium dioxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是針對尺寸為次微米級(M-TiO2)、奈米級(N-TiO2、STO1、P-25)及奈米管(NT-TiO2)之二氧化鈦粉體,利用含浸法技術將鎳金屬離子吸附於二氧化鈦表面上,並於氫氣氣氛下500 ℃恆溫4小時以進行二氧化鈦表面改質研究,二氧化鈦粉體改質前後之結構變化、粉末外觀尺寸、粉體表面吸附鎳金屬情形、強金屬-載體效應(SMSI)及光催化效率等則分別利用相關儀器檢測之。
經含浸法進行改質後,從EDS成份分析結果顯示,其二氧化鈦表面所吸附之鎳金屬含量相當稀少。由XRD結果得知,M-TiO2粉體進行500 ℃持溫4小時熱處理後,其繞射峰強度與起始粉體粉體相較下並沒有明顯的差異;編號N-TiO2及P-25粉體中在添加鎳金屬表面改質後,其Rutile相結晶性變好。從XAS之Ni K-edge結果發現,編號N-TiO2及NT-TiO2較容易將鎳金屬離子以氫氣還原成原子狀態,然而卻無法觀察其SMSI效應。
由光催化反應結果得知,經過吸附鎳表面改質後之P-25粉體呈現出較佳之光催化降解效率,在經過紫外照射3小時後,幾乎可以完全降解試液中之亞甲基藍。
In the present study, titanium dioxide powders concluding sub-micron (denoted as M-TiO2), nanometer-sized (N-TiO2, STO1, and P-25), and nanotube (NT-TiO2), were modified by adsorbing nickel ions with impregnation process. Post heat treating at 500 oC for 4 hours under reductive hydrogen atmosphere was performed. Characteristics of the titanium dioxide powders before and after surface modification were investigated.
The EDS results showed that only limited amount of nickel was adsorbed on the TiO2 surface. X-ray diffraction results showed that the relative rutile phase within the N-TiO2 and P-25 powders increased after heat treatment, while no distinguishable differences can be observed for M-TiO2 powders. Synchrotron X-ray absorption spectra revealed that nickel ions adsorbed on N-TiO2 and NT-TiO2 powders were reduced to nickel metal after heat treatment. While the reduction of nickel ion was not successfully in the other powders. Strong-metal support interaction phenomenon was not observed for all the powders examined in the present study. P25-TiO2 powders after Ni modification exhibited the best photocatalytic properties where methylene blue can be decomposed completely after 3 hours under UV radiation.
中文摘要 I
Abstract II
總目錄 III
表目錄 VII
圖目錄 VIII
第一章、前言 1
第二章、文獻回顧 3
2.1 觸媒簡介 3
2.2 二氧化碳光觸媒之物化特性 7
2.2.1 二氧化鈦晶體結構 9
2.2.2 光催化反應機制 12
2.2.3 影響光催化活性之因素 13
2.3 二氧化鈦之製備試驗 21
2.3.1 物理氣相沈積法 23
2.3.2 化學氣相沈積法 23
2.3.3 液相沈積法 24
2.3.4 溶膠凝膠法 24
2.3.5 電泳披覆法 25
2.3.6 含浸法 26
2.4 強金屬-載體效應簡介 27
第三章、實驗方法與步驟 31
3.1 二氧化鈦粉體之改質 32
3.1.1 二氧化鈦粉體前處理 32
3.1.2 含浸法製備二氧化鈦粉體改質 33
3.2 二氧化鈦粉體之特性檢測 34
3.2.1 X光繞射分析儀 34
3.2.2 冷場發射掃描式電子顯微鏡 34
3.2.3 高分辨穿透式電子顯微鏡 34
3.2.4 紫外光-可見光光譜儀 35
3.2.5 光催化實驗分析 35
3.2.6 X光吸收光譜分析 37
第四章、結果與討論 39
4.1 微米級(M-TiO2)二氧化鈦粉體之檢測結果 39
4.1.1 M-TiO2顯微結構分析 39
4.1.2 M-TiO2 FESEM結果分析 40
4.1.3 M-TiO2 TEM結果分析 42
4.1.4 M-TiO2 XAS結果分析 43
4.1.5 M-TiO2 UV-Vis及光催化觀察分析 48
4.2 奈米級(N-TiO2)二氧化鈦粉體之檢測結果 51
4.2.1 N-TiO2顯微結構分析 51
4.2.2 N-TiO2 FESEM結果分析 52
4.2.3 N-TiO2 TEM結果分析 54
4.2.4 N-TiO2 XAS結果分析 55
4.2.5 N-TiO2 UV-Vis及光催化觀察分析 59
4.3 奈米級(STO1)二氧化鈦粉體之檢測結果 61
4.3.1 STO1顯微結構分析 61
4.3.2 STO1 FESEM結果分析 62
4.3.3 STO1 TEM結果分析 64
4.3.4 STO1 XAS結果分析 65
4.3.5 STO1 UV-Vis及光催化觀察分析 69
4.4 奈米級(P-25)二氧化鈦粉體之檢測結果 71
4.4.1 P-25顯微結構分析 71
4.4.2 P-25 FESEM結果分析 72
4.4.3 P-25 TEM結果分析 74
4.4.4 P-25 XAS結果分析 75
4.4.5 P-25 UV-Vis及光催化觀察分析 79
4.5 奈米管(NT-TiO2)二氧化鈦之檢測結果 81
4.5.1 NT-TiO2顯微結構分析 81
4.5.2 NT-TiO2 FESEM結果分析 82
4.5.3 NT-TiO2 TEM結果分析 84
4.5.4 NT-TiO2 XAS結果分析 85
4.5.5 NT-TiO2 UV-Vis及光催化觀察分析 89
4.6 強金屬-載體效應觀察結果 91
4.7 二氧化鈦光催化結果 92
第五章、結論 95
參考文獻 96
1.S.J. Tauster, S.C. Fung, and R.L. Garten, “Strong Metal-Support Interactions. Group 8 Noble Metals Supported on Titanium Dioxide”, J. Am. Chem. Soc., 100 (1978) 170-175.
2.O. Treichel and V. Kirchhoff, “The Influence of Pulsed Magnetron Sputtering on Topography and Crystallinity of TiO2 Films on Glass”, Surface and Coating Technol., 123 (2000) 268-272.
3.C.H. Hung and B.J. Marinas, “Role of Water in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films”, Env. Sci. and Technol., 31 (1997) 1440-1445.
4.E. Sanchez, T. Lopez, R. Gomez, Bokhimi, A. Morales, and O. Novaro, “Synthesis and Characterization of Sol-Gel Pt/TiO2 Catalyst”, J. Solid State Chem. 122 (1996) 309-314.
5.P. Swaunyama, A. Yasumori, and K. Okada, “The Nature of Multilayered TiO2-Based Photocatalytic Films Prepared by a Sol-Gel Process”, Mater. Res. Bull. 33[5] (1998) 795-801.
6.李定粵,觸媒的原理與應用,正中,1999。
7.A.K. Ray and A.C.M. Beenackers, “Development of a New Photocatalytic Reactor for Water Purification”, Catalysis today, 40 (1998) 73-83.
8.陳富亮,最新奈米光觸媒應用技術第三章,p46-p47,普林斯頓國際股份有限公司,台北,2003 (ISBN: 986-7688-31-7)。
9.A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature 238 (1972) 37-38.
10.A. Fujishima, K. Kohayakawa, and K. Honda, “Hydrogen Production under Sunlight with Electrochemical Photocell”, J. Electrochem. Soc., 122 (1975) 1487-1489.
11.A.L. Linsebigler, G. Lu, and J.T. Yates Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev., 95 (1995) 735-758.
12.A. Wold, “Photocatalytic Properties of Titanium Dioxide (TiO2)”, Chem. Mater., 5 (1993) 280-283.
13.J.K. Burdett, T. Hughbands, J.M. Gordon, J.W. Richardson Jr., and J.V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc., 109 (1987) 3639-3646.
14.“Phase Diagrams for Ceramists Figure 4150~4999”, The American Ceramic Society, Inc., 76 (1975).
15.陳富亮,最新奈米光觸媒應用技術第四章,p53-p54,普林斯頓國際股份有限公司,台北,2003 (ISBN: 986-7688-31-7)。
16.J. Augustynski, “The Role of the Surface Intermediates in the Photoelectrochemical Behavior of Anatase and Rutile TiO2”, Electrochim. Acta 38 (1993) 43-46.
17.Q. Zhang, L. Gao, and J. Guo, “Effects of Calcinations on The Photocatalyitc Properties of Nanosized TiO2 Powders TiCl4 Hydrolysis”, Applied Catalysis B, 26 (2000) 207-215.
18.M. Anpo, T. Shima, S. Kodama, and Y. KuboKawa, “Photocatalytic Hydrogenation of CH3COOH with H2O on Small-Particle TiO2: Size Quantization Effects and Reaction Intermediates”, J. Phys. Chem., 91 (1987) 4305-4310.
19.Z. Zhang, C.C. Wang, R. Zakaria, and J.Y. Ying, “Role of Particle Size in Nanocrystalline TiO2-Base Photocatalysts”, J. Phys. Chem. B, 102 (1998) 10871-10878.
20.H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, and S. Ito, “A Patterned-TiO2/SnO2 Bilayer Type Photocatalyst”, J. Phys. Chem. B, 104 (2000) 4585-4587.
21.A. Hattori, Y. Tokihisa, H. Tada, and S. Ito, “Acceleration of Oxidation and Retardation of Reactions in Photocatalysis of a TiO2/SnO2 Bilayer Type Catalyst”, J. Electrochem. Soc. 147 (2000) 2279-2283.
22.K.E. Karakitsou and X.E. Verykios, “Effects of Altervalent Cation Doping of Titania on its Performance as a Photocatalyst for Water Cleavage”, J. Phys. Chem. 97[6] (1993) 1184-1189.
23.Z. Ding, G.Q. Liu, and P.F. Greenfield, “Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water”, J. Phys. Chem. B, 104[19] (2000) 4815-4820.
24.M. Anpo, “Application of Titanium Oxide Photocatalysts and Unique Second-Generation TiO2 Photocatalysts able to Operate Under Visible Light Irradiation for the Reduction of Environmental Toxins on a Global Scale”, Studies in Surface Science and Catalysis, 130 (2000) 157-167.
25.A.I. Kokorin, V.M. Arakeljan, and V.M. Arutyunyan, “Structure and Photoelectrochemical Properties of the Doped Polycrystallne TiO2”, Proceedings of the 13th Workshop on Quantum Solar Energy Conversion-(QUANTSOL 2001).
26.目黑真作、高木修、外島忍,金屬表面技術,31[4] (1980) 191。
27.垰田博史,光觸媒圖解第一章,p28-p29,商周出版社,台北,2003 (ISBN: 986-124-063-2)。
28.K. Takeda and K. Fujiwara, “Characteristics on the Determination of Dissolved Organic Nitrogen Compounds in Natural Waters Using Titanium Dioxide and Plantinized Titanium Dioxide Mediated Photocatalytic Degradation”, Water Research, 30, No. 2 (1996) 323-330.
29.A. Dobosz and A. Sobczyñski, “The influence of Silver Additives on Titania Photocatalytivity in the Photooxidation of Phenlo”, Water Research, 37 (2003) 1489-1496.
30.J. Chen, D.F.Ollis, W.H. Rulkens, and H.Bruning, “Photocatalyzed Oxidation of Alcohols and Organochlorides in the Presence of Native TiO2 and Metallized TiO2 Suspensions Part(I): Photoncatalytic Activity and pH Influence”, Water Research, 33, No. 3 (1999) 661-668.
31.李秋煌,改善環境的仙丹,370期,科學發展,(2003) 28-33。
32.C.G. Wu, L.F. Tzeng, Y.T. Kuo, and C.H. Shu, “Enhancement of the Photocatalytic Activity of TiO2 Film via Surface modification of the Substrate”, Applied Catalysis A: General, 226 (2002) 199-211.
33.C. He, Y. Xiong, J. Chen, C. Zha, and X. Zhu, “Photoelectrochemical Performance of Ag-TiO2/ITO Film and Photoelectrocatalytic Activity Towards the Oxidation of Organic Pollutants”, J. of Photochemistry and Photobiology A: Chemistry, 157 (2003) 71-79.
34.J. Domaradzki, E.L. Prociow, D. Kaczmarek, T. Berlicki, A. Podhorodecki, R. Kudrawiec, and J. Misiewicz, “X-ray, Optical and Lectrical Characterization of Doped Nanocrystalline Titanium Oxide Thin Films”, Materials Science Engineering B, 109 (2004) 249-251.
35.Y. Xie, C. Yuan and X. Li, “Photocatalytic Degradation of X-3B dye by Visible Light Using Lanthanide Ion Modified Titanium Dioxide Hydrosol System”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 252 (2005) 87-94.
36.S.X. Liu, Z.P. Qu, X.W. Han, and C.L. Sun, “A Mechanism for Enhanced Photocatalytic Activity of Silver-Loaded Titanium Dioxide”, Catalysis Today, 93-95 (2004) 877-884.
37.S.W. Lam, K. Chiang, T.M. Lim, R. Amal, and G.K.-C. Low, “Effect of Charge Trapping Species of Cupric Ions on the Photocatalytic Oxidation of Resorcinol”, Applied Catalysis B: Environmental, 55 (2005) 123-132.
38.T. Sauer, G. C. Neto, H. J. José, and R. F. P. M. Moreira, “Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor”, J. Photochemistry and Photobiology A: Chemistry, 149 (2002) 147-154.
39.垰田博史,光觸媒圖解第二章,p38-p39,商周出版社,台北,2003 (ISBN: 986-124-063-2)。
40.T. Richardson and M. Rubin, “Liquid Phase Deposition of Electrochromic Thin Films”, Electrochim. Acta. 46 (2001) 2119-2123.
41.A.W. Morawski, J. Grzechulska, and K. Kalucki, “A New Method for Preparation of Potassium-Pillared Layered Titanate Applied in Photocatalysis”, J. Phys. Chem. Solids 57 (1996) 1011-1017.
42.Y. Bessekhouad, D. Robert, J-V Weber, and N. Chaoui, “Effect of Alkaline-Doped TiO2 on Photocatalytic Efficiency”, J. Photochemistry and Photobiology A: Chemistry, 167 (2004) 49-57.
43.H. Jang, S. Whangbo, H. Kim, K.Y. Im, Y. Lee, I. Lyo, and C. Whang, “Titanium Oxide Films on Si(100) Deposited by Electron-Beam Evaporation at 250 °C”, J. Vac. Sci. Technol. A, 18[3] (2000) 917-921.
44.T. Yokota, F. Yamada, K. Miyashita, H. Hirai, Takano, and M. Kumagai, “Preparation of Titanium-Oxide Films by Solid-State Reactions of Titanium/Silicon-Oxide/Silicon Structures”, Thin Solid Films, 334 (1998) 109-112.
45.H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki “Photocatalytic Activity of Titanium Oxide Prepared by Liquid Phase Deposition (LPD)”, J. Mater. Chem. 8 (1998) 2019-2024.
46.Y Bessekhouad, D. Robert, and J.V. Weber, “Synthesis of Photocatalytic TiO2 Nanoparticles: Optimization of the Preparation Conditions”, J. of Photochemistry and Photobiology A: Chemistry, 157(2003) 47-53.
47.L. Li, W. Zhu, P. Zhang, Z. Chen, and W. Han, “Photocatalytic Oxidation and Ozonation of Catechol over Carbon-Black-Modified Nano-TiO2 Thin Films Supported on Al Sheet”, Water Research 37 (2003) 3646-3651.
48.X.Z. Li, F.B. Li, C.L. Yang, and W.K. Ge, “Photocatalytic Activity of WOx-TiO2 under Visible Light Irradiation”, J. of Photochemistry and Photobiology A, 141 (2001) 209-217.
49.F.F. Reuss, Mem. Soc. Imp. Natur., 2 (1809) 327.
50.I. Zhitomirsky and L. Gal-Or, “Formation of Hollow Fibers by Electrophoretic Deposition”, Materials Letters 38 (1999) 10-17.
51.M. Kodama and H. Honda, “Electrophoretic Deposition of Ultrafine Pitch Particles”, Carbon, 34 (1996, 9) 1148-1150.
52.A. Boccaccini, U. Schindler, and H.G. Krüger, “Ceramic Coatings on Carbon and Metallic Fibres by Electrophoretic Deposition” Materials Letters 51 (2001) 225-230.
53.W.A. Jacoby, M.R. Nimlos, and D.M. Blake, “Products, Intermediates, Mass Balances, and Reaction Pathways for the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis”, Environ. Sci. Technol. 28 (1994) 1661-1668.
54.M. Tan, G. Wang, and L. Zhang, “Thermal Desorption in Nanocrystalline TiO2”, J. Appl. Phys. 80 (1996) 1186-1189.
55.P. Murugavel, M. Kalaiselvam, A. Raju, and C. Rao, “Sub-Micrometre Spherical Particles of TiO2, ZrO2 and PZT by Nebulized Spray Pyrolysis of Metal-Organic Precursors”, J. Mater. Chem. 7 (1997) 1433-1438.
56.C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 Thin Films by Pulsed Laser Deposition for Waveguiding Applications”, Appl. Surf. Sci. 96 (1996) 836-841.
57.Y. Gao, Y. Liang, and S.A. Chambers, “Thermal Stability and the Role of Oxygen Vacancy Defects in Strong Metal Support Interaction - Pt on Nb-doped TiO2(100)”, Surf. Sci. 365 (1996) 638-648.
58.S.J. Tauster, S.C. Fung, R.T. K. Baker, and J.A. Horsley, “Strong Interactions in Supported-Metal Catalysts”, Science, 211[4487] (1981) 1121-1125.
59.A. Horsley, “A Molecular Orbital Study of Strong Metal-Support Interaction Between Platinum and Titanium Dioxide”, J. Am. Chem. Soc., 101 (1979) 2870-2874.
60.D.N. Belton, Y.M. Sun, and J.M. White, “Thin-Film Models of Strong Metal-Support Interaction Catalysts. Platinum on Oxidized Titanium”, J. Phys. Chem., 88 (1984) 1690-1695.
61.G. Dalmai-Imelik, A. Leclereqc, and A. Maubert-Muguet, “Study by Electron Microscopy and Electron Diffraction of Formation of Nickel Epitaxially Grown Catalysts”, J. Solid State Chem., 16 (1976) 129-139.
62.J. Simeons, R.T.K. Baker, D.J. Dwyer, C.R. F. Lund, and R.J. Ma don, J. of Cat., 86 (1984) 359-372.
63.A.K. Singh, N.K. Pande, and A.T. Bell, J. of Cat., 94 (1985) 422-435.
64.L.I. Grishchenko, N.G. Medvedkova, V.V. Nazarov, and Y.G. Frolov, “Aggregation Stability of Titanium Dioxide Hydrosols”, Colloid J., 56[2] (1994) 215-217.
65.S. Takenaka, H. Ogihara, I. Yamanaka, and K. Otsuka, “Decomposition of Methane over Support-Ni Catalysts: Effect of the Supports on the Catalytic Lifetime”, Applied Catalysis A: General, 217 (2001) 101-110.
66.R. Ruus, A. Kikas, A. Saar, A. Ausmees, E. Nõmmiste, J. Aarik, A. Aidla, T. Uustare, and I. Martinson, “Ti 2p and O 1s X-Ray Absorption of TiO2 Polymorphs”, Solid State Communications, 104 (1997) 199-203.
67.Y.h. Zhang and A. Reller, “Phase Transformation and Grain Growth of Doped Nanosized Titania”, Mater. Science and Engineering C, 19 (2002) 323-326.
68.Q. Zhang, L. Gao, and J. Guo, “Effects of Calcination on the Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis”, Applied Catalysis B: Environment, 26 (2000) 207-215.
69.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 11 (1999) 1307-1311.
70.S. Räth, F. Gracia, F. Yubero, J.P. Holgado, A.I. Martin, D. Batchelor, and A.R. González-Elipe, “Angle Dependence of the O K Edge Absorption Spectra of TiO2 Thin Films with Preferential Texture”, Nuclear Instruments and Methods in Physics Research B, 200 (2003) 248-254.
71.G. Sankar, C.N.R. Rao, and T. Rayment, “Promotion of the Metal-Oxide Support Interaction in the Ni/TiO2 Catalyst”, J. Mater. Chem., 1[2] (1991) 299-300.
72.T. Arunarkavalli, G.U. Kulkarni, G. Sankar, and C.N.R. Rao, “Strong Metal-Support Interaction in Ni/TiO2 Catalysts: in situ EXAFS and Related Studies”, Catalysis Letters, 17 (1993) 29-37.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top