跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡奉祐
研究生(外文):Feng-Yu Tsai
論文名稱:有效增進質子交換膜燃料電池(PEMFC)奈米鉑金屬觸媒使用效率之研究
論文名稱(外文):Effective Promotion of Utilization of Platinum Nanocatalysts in PEM Fuel Cells
指導教授:駱榮富
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:107
中文關鍵詞:熱壓(Hot press)Nafion117EPD)膜極組(Membrane Electrode AssemblyMEA)質子交換膜燃料電池(Proton Exchange Membrane Fuel CellPEMFC)電泳披覆(Electrophoretic Deposition離子聚合物(Nafion ionomer)Pt/MWNT
外文關鍵詞:NanocatalytsProton Exchange Membrane Fuel Cell (PEMFC)Pt NanoparticlesNafion IonomerNafion 117Hot Press(Membrane Electrode Assembly (MEA)Electrophoretic Deposition (EPD)Pt/MWNT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
本研究的目的是利用電泳披覆(EPD)製程應用於質子交換膜燃料電池(PEMFC)的領域,使用奈米級Pt/C與乙二醇(EG)合成之Pt/CNT觸媒粉體,經電泳披覆製程製作電池膜極組(MEA)。選擇水系溶劑混合最佳比例之Pt/C觸媒及離子聚合物(Nafion Ionomer),改變懸浮液酸鹼度值,探討對懸浮液之穩定性及分散性狀況;當pH值為8時,觸媒粉體表面Zeta電位值為-54.8 mV,粉體之分散性頗佳且懸浮穩定度亦良好。當溶劑中離子聚合物為23.2 wt%固含量時可獲得最佳的觸媒電化學活化面積(EAS)。比較並探討EPD製程與傳統熱壓製程製備的膜極組(MEA)之發電效能優劣,從測試數據中發現EPD製程製備之膜極組,其電池效能(154 mW/cm2)較傳統熱壓製程(122.3 mW/cm2)佳,從SEM顯微結構發現熱壓後的觸媒團簇更趨嚴重,使得反應三相點呈減縮,且交流阻抗分析結果指出熱壓後電極阻抗變大。EPD製備之0.2 mg/cm2 Pt膜極阻其電池效能(154 mW/cm2)優於商用E-TEK 0.4 mg/cm2 Pt厚層疏水電極(122.1 mW/cm2)。水分的濃度與前驅物(H2PtCl6•6H2O)添加速度對Pt奈米觸媒粒徑之影響。當反應溶劑中去離子水的含量從0-30 vol%將造成Pt奈米觸媒粒徑分佈由2.4-4.2 nm。此乃水分多寡影響反應溶劑之pH值,並促成粒徑尺寸與分散狀態之差異。吾人以合成之18.6 wt% Pt/CNT觸媒粉體與商用E-TEK 20 wt% Pt/C觸媒粉體作一電池效能比較,從SEM顯微圖像發現觸媒電極其孔隙率較Pt/C觸媒粉體電極來得高,使得Pt觸媒使用率獲得提升,如此使得電極反應三相點增加,故電池效能亦隨之提升。
In this study, the multi-walled carbon nanotubes (MWNTs) were treated through a chemical oxidation by mixture of nitric acid and sulfuric acid. Nearly monodispersed nanosized platinum catalysts (2-3 nm) for proton exchange membrane fuel cells (PEMFCs) were synthesized by the reduction of hexachloroplatinic (IV) acid precursor with ethylene glycol (EG) solvent at 50oC, which were simultaneously distributed over the surface of the carriers of MWNTs. The structure and materials of membrane electrode assembly (MEA), which was in form of nanoscaled Pt/C and Pt/CNT catalysts coated by electrophoretic deposition (EPD) onto Nafion membrane to be sandwiched with the carbon-based electrodes of PEMFC such as carbon fabric, become the key component to booster the entire power efficiency of PEMFC. The goal of this study is to develop the novel processing technique to enhance the efficiency of catalyst loading and distribution on the electrodes, because of considerable cost for novel metal catalysts materials such as Pt.
Prior to the EPD process, the choice of aqueous solution of adequate acidity with optimized ratio of Pt/C nanocatalysts and Nafion ionomer to prepare the EPD suspension with a good colloidal stability and dispersivity. The zeta potential of Pt/C particles in the suspension is -54.8 mV for pH value was tuned approximately at 8 to maintain good suspension stability. The electrochemical active area (EAS) of nanocatalysts reached the highest value as solid content of Nafion ionomer in the suspension was 23.2%.
The results show that the performance of fuel cell with the MEA prepared by EPD technique was (154 mW/cm2) excels that of MEA prepared by the conventional hot press method (122.3 mW/cm2) because the nanocatalysts were heavily agglomerated by the hot press process, which led to a significant reduction of available triple-phase areas in the electrodes from SEM observation and an increase of impedance of electrodes by AC impedance measurement. The EPD process proved to have lower Pt loading for MEA fabrication (0.2 mg Pt/cm2) and better cell performance as compared the commercial E-TEK MEA (0.4 mg Pt /cm2) with hydrophobic treatment. The size of nanosized platinum catalysts (2.4-4.2 nm) by the reduction of H2PtCl6.6H2O precursor and EG solvent is affected by water content (0-30 vol%) in the solution and the influx rate of Pt precursor. The water content is in conjunction with the variation of pH value of reaction solution and the dispersion of synthesized Pt particles. It is also noticeable that the PEM fuel cells with Pt/MWNT nanocatalysts (18.6 wt%) had an increased power performance than the commercially available Pt/C nanocatalysts (20 wt%, Pt on Vulcan XC-72, E-TEK) for the catalyst effectiveness for Pt/MWNT is much higher with an increase of porosity and triple-phase areas in the electrode.
中文摘要 I

英文摘要 II

目錄 IV

圖目錄 VII

表目錄 XI

第一章 緒 論 1

1.1 燃料電池簡介 1

1.2 質子交換膜燃料電池的發展 6

1.3 燃料電池之電極材料 7

1.4 電泳技術發展簡介 8

1.5 電泳懸浮液系統種類 10

1.6 研究目的及重點 14

第二章 理論基礎 15

2.1 電泳披覆機制 15

2.2 電泳粒子表面電荷來源 16

2.3 表面電位之基本概念 19

2.4 電雙層理論 20

2.5 工作電場所影響的電雙層結構 23

2.6 膠體化學與DLVO理論簡述 24

2.7 高分子的空間穩定作用 31

2.7.1 理論解釋兩種穩定機構 34

2.7.2 穩定機構的判斷 35

2.7.3 空間穩定效應的特點 36

2.8 懸浮液中粉體的沉降速率 37

2.9 定電壓與定電流之電泳披覆 38

第三章 實驗步驟與方法 41

3.1 EPD溶劑的選擇 41

3.2 以循環伏安法決定離子聚合物添加最適化 42

3.3 電泳批覆法製備膜極組 44

3.4 觸媒鍍層組成量測 45

3.5 多壁奈米碳管載體之鉑觸媒製備流程 50

3.6 發電效率測試 52

3.6.1 五層膜極組單電池組裝 52

3.6.2 燃料電池測試條件 54

第四章 結果與討論 57

4.1 EPD懸浮液之製備與最適化 57

4.1.1 EPD懸浮液溶劑之選用 57

4.1.2 Zeta電位量測與DLS粒徑分析觸媒粉體於三種溶劑之
差異 59

4.1.3 觸媒粉體表面帶電荷最佳化 64

4.1.4 藉由循環伏安曲線分析觸媒於三種溶劑中之分散行為 65

4.2 EPD製程參數的測試與評估 66

4.2.1 找尋電泳披覆參數最佳化 66

4.2.2 Nafion離子聚合物含量對電泳披覆的影響 69

4.3 Nafion離子聚合物含量對觸媒粉體之電化學活化反應的
影響 71

4.4 EPD製程製備之膜極組與傳統熱壓法之發電效能比較 75

4.5 EPD製程製備之膜極組與商用E-TEK膜極組的效能比較 79

4.6 利用多璧奈米碳管作為Pt催化劑載體合成Pt觸媒粉體 82

4.7 奈米Pt金屬觸媒材料分析 86

4.8 商用E-TEK Pt/C及Pt/MWNT膜極組之單電池效能分析 91

4.9 未來研究方向 96
1.衣寶廉,燃料電池-原理與應用,五南書局
2.M. Warshay and P.R. Procopius, “The fuel cell in space: yesterday, today and tomorrow”, J. Power Sources, 29 (1990) 193-200.
3.Arthur D. Little Inc., Cost Analysis of Fuel Cell Systems for Transportation: Baseline System Cost Estimate, Final Report to Department of Energy (2000).
4.F. N. Buchi and S. Srinivasan, “Operating proton exchange membrane fuel cells without external humidification of the reaction gases: Fundamental aspect”, J. Electrochem. Soc., 144 (1997) 2767-2772.
5.J. H. Lee and T. R. Lalk, Modelling fuel cell stack systems”, J. Power Sources, 73 (1998) 229-241.
6.S. J. Lee, “Effect of nafion impregnation on performance of PEMFC electrodes”, Electrochimica Acta, 43 (1998) 3693-3701.
7.E. A. Ticianelli, C. R. Derouin, and S. Srinivasan, J. Electroanal. Chem., 251, 275(1988).
8.M. S. Wilson. U.S. Pat. 5,211,984 (1993).
9.V. A. Paganin, E. A. Ticianelli, and E. R. Gonzalez, in Proton Conducting Fuel Cells I, S. Gottesfeld, G. Halpert, and A. Landgrebe, Editors, PV 95-23, p. 102, The Electrochemical Society Proceedings Series, Pennington, NJ (1995).
10.C. K. Witham, W. Chun, T. I. Valdez, and S. R. Narayanan, Electrochem. Solid-State Lett., 3, 497 (2000).
11.Leo J. M. J. Blomen, and M. N. Megerwa, “Fuel Cell Systems”, Plenum Press, New York and London (1993).
12.A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook” Van Nostrand Reinhold, New York (1989).
13.鄭煜騰、鄭耀宗,質子交換膜型燃料電池的製造技術,能源季刊,
第二十七卷 第二期,118 頁,(1997)。
14.鄭耀宗,各種燃料電池技術的進展分析,台電工程月刊 第601 期,9 頁, (1998)。
15.V. M. Jalan, B. L. Bushnell, “Method for producing highly dispersed catalytic platinum”, U. S. Patent 4136059.
16.G. Faubert, D. Guay, J. P. Dodelet, “Pt Inclusion Compounds as Oxygen Reduction Catalysts in Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., vol. 145, p. 2985, (1998).
17.V. Jalan, E. J. Taylor, “Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid”, J. Elechem. Soc., vol. 130, p.2299, (1983).
18.M. T. Paffet, G. J. Beery, S. Gottesfeld, “Oxygen Reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and Roughened Platinum”, J. Electrochem. Soc., vol.135, p. 1431 (1988).
19.S. Mukerjee, S. Srinivasan, M. P. Soriaga, J. McBreen, “Role of Structural 151 and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction”, J. Electrochem. Soc., vol. 142, p. 1409, (1995).
20.A. Biloul, M. Gouerec, G. Savy, S. Scarbeck, and J. Riga, “Oxygen Electrocatalysis under Fuel Cell Conditions: Behaviour of Cobalt Porphyrins and Tetraazaannulene Analogues”, J. Appl. Electrochem., Vol. 26, p. 1139 (1996)
21.Mark C. Lefebvre, Zhigang Qi, Peter G. Pickup, “Electronically Conducting Proton Exchange Polymer as Catalyst Supports for Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., vol. 146, p. 2054, (1999).
22.F. F. Reuss, “Notice sur un nouvel Effet de 1’electricite gavanique,” Mem. Soc. Imp. Natur. Moscou, 2 (1809) 327-37.
23.S. N. Heavens, ”Electrophoretic deposition as a processing route for ceramics,” in Advanced Ceramic Process and Technology, J.G.P. Binner (Ed.), Vol. 1, Noyes Publications (1990) 255-283.
24.R.W. Powers, “The Electrphoretic Forming of BetaAlumina Ceramic,” J. Electrochem. Soc., 122 [4] 490-50 (1975).
25.M. Becks, U. Klein and M. Peiniger, “Electrophoretic Deposition of Textured YBa2Cu3O7-x Films on Substrates, ” American Institute of Physics, (1989) 5939-5943.
26.P. S. Nicholson and P. Sarkar, “Electrophoretic Deposition and its use to synthesize Al2O3/ZrO2 Micro-Laminate ceramic/ceramic Composite, ” J. of Materials Science, 28 (1993) 6274-6278
27.R. Chaim, G. Stark and Gal Or, “Electrochemical ZrO2 and Al2O3 Coatings on SiC Substrates, ” J. of Materials Science, 29 (1994) 6241-6248
28.Zhitomirsky and L.Gal-Or, "Formation of hollow fibers by electrophoretic deposition," Materials Letters, 38 (1999) 10-17.
29.L. Vandeperre, O. Van Der and J. Persello, “Electrophoretic Forming of Silicon Carbide Ceramic, ” J. of the Euro. Ceram. Soc., 17 (1996) 373-3376.
30.F. Harbach and H. Nienburg, “Homogeneus Funtional Ceramic Components through Electrophoretic Deposition from Stable.
31.J. Van Tassel and C.A. Randall, “Electrophoretic Deposition and Sintering of Thin/Thick PZT Films, ” J. of Euro. Ceram. Soc., 19 (1999) 955-958.
32.L. Vandeperre, O. Van Der, “SiC-Graphite Laminates Shaped by EPD, ” Ceramic Bulletin, (1998) 53-58.
33.M. Gupta and C. Y. Loke, “Micromechanical Modeling of Processing induced damage in Al-SiC Metal Matrix Composites Synthesized Using the Disintegrated Melt Deposition Technique, ” Materials Research Bulletin, 34 (1999) 71-79.
34.Qian Zhou, Peng Dong, “Progress in Three-Dimensionally Ordered Self-Assembly of Colloidal SiO2 Particles”, China Particuology. (2003)
35.R. C. Hayward, D. A. Saville, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns”, Macmillan Magazines Ltd. (2000)
36.Eugenia Kumacheva, Robert Kori Glding, “Colloid Crystal Growth on Mesoscopically Patterned Surfaces: Effect of Confinement”, Advanced Materials. (2002)
37.Simon O. Lumsdon and Eric W. Kaler, “Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals”, Applied physics letters. (2002)
38.Beomseok Kim, Steven L. Tripp, and Alexander Wei, “Self-Organization of Large Gold Nanoparticle Arrays”, American Chemical Society. (2001)
39.Yilong Han and David G. Grier, “Electrohydrodynamic Instabillities in Sedimenting Charge-Stabilized Colloid”, Institute for Biophysical Dynamics, and Department of Physics The University of Chicago.(2003)
40.B. Ferrari, A.j. Sanchez-Herencia, R. Moreno, “Aqueous lectrophoretic deposition of Al2O3/ZrO2 layered ceramics,” Materials Letters, 35 (1998) 370-374
41.Fengqiu Tang, Tetsuo Uchikoshi, Kiyoshi Ozawa, and Yoshio Sakka, “Electrophoretic deposition of aqueous nano-γ-Al2O3 suspensions,” Materials Research Bulletin, 37 (2002) 653-660
42.B. Ferrari, A.J. Sanchez-Herencia, and R. Moreno, “Electrophoretic Forming of Al2O3/Y-TZP Layered Ceramics From Aqueous Suspensions,” Materials Research Bulletin, 33 [3] 487-499 (1998)
43.B. Ferrari, J. C. Farinas, and R. Moreno, “Determination and Control of Metallic Impurities in Alumina Deposits Obtained by Aqueous Electrophoretic Deposition,” J. Am. Ceram. Soc., 84 [4] 733-39 (2001)
44.B. Ferrari, and R. Moreno, “Electrophoretic Deposition of Aqueous Alumina Slips,” Journal of the Europeam Ceramic Society, 17 (1997)549-556
45.A.R. Boccaccini, H. Kern, H.-G. Kruger, P.A. Trusty, and D.M.R. Taplin, “Electrophoretic deposition of nanoceramic paricles onto electrically conducting fibre fabrics,” 43rd International Scientific Colloquium Technical University of Ilmenau, September 21-24, 1998
46.K. Simovic, V.B. Miskovic-Stankovic, D. Kicevic, P. Jovanic, “Electrophoretic deposition of thin alumina films from water suspension,” Physicochemical and Engineering Aspects 209 (2002) 47-55
47.Wenjea J. Tseng, and Chun Hsien Wu, “Aggregation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions,” Acta Materialia, 50 (2002) 3757-3766
48.Fengqiu Tang, Yoshio Sakka, Tetsuo Uchikoshi, “Electrophoretic deposition of aqueous nano-sized zinc oxide suspensions on a zinc electrode”, Materials Research Bulletin, 38 (2003) 207-212.
49.P. Sarkar and P. S. Nicholson, “Electrophoretic Deposition (EPD):Mechanisms, Kinetics, and Application to Ceramics,” J. Am. Ceram. Soc. 79 [8] 1987-2002 (1996)
50.C.Y.Chen, S.Y.Chen and D.M.Liu, "Electrophoretic Deposition Forming of Porous Alumina Membranes," Acta. Mater., 47 [9] 2717-26 (1999)
51.R. W. Powers, “The Electrphoretic Forming of Beta-Alumina Ceramic,” J. Electrochem. Soc., 122 [4] 490-50 (1975).
52.D. Myers, “Surfaces, Interfaces, and Colloids : Principles and Applications ,– 2nd (ed.),” (1999) 47, 92, 232
53.P.S. Nicholson, P. Sarkar, and X. Huang, “Electrophoretic Deposition and Its Use of Synthetize ZrO2/Al2O3 Microlaminate Ceramic/Ceramic Composites,” J. Mater. Sci., 28 (1991) 6274-8
54.A.A. Foissy and G. Robert, “Electrophoretic Forming of Beta-Alumina from Dichloromethane Suspensions,” Ceramic Bulletin, 6 [2] 251-255 (1982)
55.D. Myers, “Surfaces, Interfaces, and Colloids : Principles and Applications ,– 2nd (ed.),” (1999) 47, 92, 232
56.北原文雄,古澤邦夫,尾崎正孝,大島廣行,“Zeta Potntial”,(1997) 164-166
57.周祖康,膠體化學基礎,北京大學出版社
58.M. Müllenborn, H. Dirac, J.W. Petersen, and S. Bouwstra, "Fast three-dimensional laser micromachining of silicon for microsystems," Sensors and Actuators - A - Physical, 52 [1-3] (1996) 121-5
59.J. Jonsmann, O. Sigmund, and S. Bouwstra, "Compliant thermal microactuators," Sensors and Actuators A: Physical, 76 [1-3] (1999) 463-9
60.H. C. Hamaker, “Physical ”, 4 (1937) 1058- 64
61.James S. Reed, “Principles of Ceramics Processing,– 2nd (ed.),” Wiley-Inter. Science (1994) 221
62.A. Pozio, M. Francesco, et. al., J. Power Sources, 105 (2002) 13-19
63.黃鴻昇,”奈米觸媒粉體之電泳披覆技術於質子交換膜燃料電池(PEMFC)膜極組製程改善與性能分析”,逢甲大學材料科學與工學系碩士論文(2005)
64.B. Ferrari, A.j. Sanchez-Herencia, R. Moreno, Materials Letters, 35 (1998) 370-374
65.Keh, H.J. Anderson, J.L., J. Fluid Mech. 153 (1985) 417
66.Ennis, J. and Anderson, J.L., J. Colloid Interface Sci. 185 (1997) 497
67.E. Passalacqua, F. Lufrano et al., Electrochimica Acta, 46 (2001) 799-805
68.T. Matsubayashi, A. Hamada, et al., 1994 Fuel Cell Seminar, Program and Abstracts, San Diego, CA, Nov. 28-Dec. 1, 1994 581-584
69.M. Uchida, Y. Aoyama, et al., J. Electrochem. Soc. 142 (1995) 4143
70.V. A. Pagani, E. A. Ticianelli, et al., J. Appl. Electrochem. 26 (1996) 297
71.E. Antolini, L. Giorgi, A. Pozio, E.passalacqua, J. Power Sources, 77 (1999) 136-142
72.Joo S. H., Choi S. J., Oh I., Kwak J., Liu Z., Terasaki O. and Ryoo R., Nature, 412 (2001) 169
73.Rongqing Yu, Luwei Chen, et al., Chem. Mater., 10 (1998) 718-722
74.T. Matsumoto, T. Komatsu et al., Catalysis Today 90 (2004) 277-281
75.Jianlu Zhang, Xiaoli Wang et al., Rcact. Kinet. Catal. Lett. 83 (2004) 229-236
76.Wenzhen Li, changhai Liang et al., J. Phys. Chem. B 107 (2003) 6292-6299
77.Nenad Markovic, Hubert Gasteiger and Philip N. Ross, J. Electrochem. Soc. 144 (1997) 1591
78.J. W. Guo, T. S. Zhao, J. Prabhuram and C. W. Wong, Electrochimica Acta, 50 (2005) 1973-1983
79.R. Giorgi, P. Ascarelli, S. Turtu and V. Contiti, Applied Surface Science, 178 (2001) 149-155
80.B. Ferrari, A. j. Sanchez-Herencia, R. Moreno, Materials Letters, 35 (1998) 370-374
81.薛志鴻,”質子交換膜型燃料電池電極在CO存在下之阻抗分析”,國立成功大學化學工程系碩士論文(2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top