跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏依齡
研究生(外文):Yi-ling Yen
論文名稱:磁控濺鍍電致色變氧化鎢於聚對苯二甲酸乙二醇酯導電軟性基板之研究
論文名稱(外文):Study on the Sputter Deposition of Electrochromic Tungsten Oxide on Flexible Conductive PET Polymer
指導教授:何主亮何主亮引用關係
指導教授(外文):Hu-liang He
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料與製造工程所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:70
中文關鍵詞:片電阻聚對苯二甲酸以二醇酯氧化銦錫電致色變氧化鎢磁控濺鍍軟性基板
外文關鍵詞:flexibleindium tin oxidePETtungsten oxidemagnetron sputter depositionelectrochromicsheet resistance
相關次數:
  • 被引用被引用:5
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:1
本研究以反應性磁控濺鍍(Reactive magnetron sputter deposition)法製備WO3電致色變層與Ta2O5離子傳導層於聚對苯二甲酸乙二醇酯(PET)導電軟性基板上,目的在於了解PET基板的ITO片電阻值對於Ta2O5/WO3電致色變元件之變色行為影響,以期明瞭電致色變元件發展於軟性基板之可行性。目前軟性基板因耐熱性問題造成片電阻偏高不下,而使得多數應用ITO為傳導介質之元件發展受限,本實驗藉由改變片電阻由100 Ω/□、250 Ω/□、350 Ω/□及500 Ω/□之PET軟性基板為主,並以片電阻3 Ω/□及100 Ω/□之玻璃基板為對照組,探討片電阻對於WO3變色效率與光學密度差的影響。
實驗結果顯示,片電阻對於WO3變色效率與光學密度差有非常大的影響。原因為片電阻越低具有較高的載子遷移率,當導電載子遷移率增加時可使導電載子快速遷移並與鋰離子反應而使起始著(去)色電流增加,造成WO3變色之響應時間縮短與光學密度差提高。片電阻降低會使相同電壓下之載子遷移率提高,當片電阻由500 Ω/□降低為3 Ω/□,於Ta2O5/WO3/ITO時其起始著色電流由1.7 mA提高為34.8 mA,去色電流由3.2 mA提高為57.3 mA;著色時間由43 s縮短為25 s,去色時間由26 s縮短為6 s;著色穿透度由28.8 %降低為5.1 %,光學密度差由0.46提升至1.13。本研究說明只要能有效降低軟性基板的片電阻即可使電致色變元件的變色效率大幅提高。
This study is to reveal the electrochromic behavior of tantalum oxide /tungsten oxide, coated over the top of flexible transparent conductive PET polymer via reactive magnetron sputter deposition. The sheet resistance of the transparent conductive layer was changed to understand the applicability of tantalum oxide/tungsten oxide on flexible conductive PET polymer, where its heat sensitive nature blockaded the sheet resistance of the ITO on it to a certain level. It is therefore interesting to have two types of substrate material for comparison. One is flexible conductive PET polymer, with a sheet resistance of 100 Ω/□, 250 Ω/□, 350 Ω/□ and 500 Ω/□, respectively, the other is ITO glass, with a sheet resistance of 3 Ω/□ and 100 Ω/□, respectively. The relationship between the coloring efficiency as well as optical density of the deposited tungsten oxide and the sheet resistance of the ITO layer on substrate where investigated.
Experimental results show that the sheet resistance negatively influences the coloring-bleaching efficiency and optical density change of tungsten oxide layer coating. During coloring, the ion (Li+) and electron enter tungsten oxide layer from both side of the tungsten oxide and cause coloring reaction. The ITO layer with lower sheet resistance has higher mobility providing electrons to entered tungsten oxide layer, which results in faster response and larger optical density change in tungsten oxide layer. As the sheet resistance reduces from 500 Ω/□ to 3 Ω/□, the initial current of coloring increases from 1.7 mA to 34.8 mA and the initial current of bleaching increases from 3.2 mA to 57 mA. Mean while, the response time for coloring reduces from 43 s to 25 s and the response time for bleaching reduces from 26 s to 6 s. The transmittance after coloring reduces from 28.8 % to 5.1 % and optical density change increases from 0.46 to 1.13. This study shows that the sheet resistance of the ITO coated conductive PET polymer can greatly affect electrochromic behavior of the tungsten oxide film on it, in terms of coloring-bleaching efficiency and optical density change.
中文摘要
英文摘要
總目錄
圖目錄
表目錄
第一章 緒論
第二章 文獻回顧
2-1 電致色變原理
2-2 電致色變材料
2-3 電致色變元件
2-4 電致色變元件發展
2-4-1 懸浮微粒技術
2-4-2 高分子分散液晶技術
2-4-3 熱致色變技術
2-4-4 氣致色變技術
2-4-5 電泳顯示技術
2-4-6 旋轉球顯示技術
2-3 軟性元件及研究動機
第三章 實驗方法
3-1 導電基材前處理
3-2 濺鍍系統
3-3 氧化鎢電致色變層之製備
3-4 氧化鉭固態電解質層之製備
3-5 鍍層微觀組織及晶體結構分析
3-6 電致色變元件特性分析
3-6-1 霍爾效應
3-6-2 階梯響應電位分析
3-6-3 循環伏安曲線分析
3-6-4 紫外-可見光譜分析
第四章 結果與討論
4-1 鍍層微觀結構及微觀型態
4-2 導電基板片電阻對於載子濃度及遷移率之影響
4-3 導電基板片電阻對於元件階梯電位響應之影響
4-4 導電基板片電阻對於元件響應時間之影響
4-5 導電基板片電阻對於元件循環伏安特性之影響
4-6 導電基板片電阻對於元件紫外-可見光譜之影響
4-7 導電基板片電阻對於特定波長穿透度之影響
4-8 導電基板片電阻對於光學密度差之影響
第五章 結論
誌謝
參考文獻
【1】http://www.materialsnet.com.tw/DocView.aspx/。
【2】http://www.research.philips.com/newscenter/pictures/downloads/display_elpap_04_h.jpg/。
【3】http://www.mercedes-benz.com/content/mbcom/international/international_website/en/com.html/。
【4】G. Bruer, “Large area glass coating”, Surface and Coatings Technology 112 (1999) 358-365.
【5】林保璋,“三氧化鎢薄膜電極之製備及其電致色變性質之研究”,國立台灣大學化學工程學研究所碩士論文,(1998),35頁。
【6】M. A. Habib and D. Glueck, “The electrochromic properties of chemically deposited tungsten oxide films”, Solar Energy Materials 18 (1989) 127-141.
【7】T. Yoshino, N. Baba, H. Masuda and K. Arai, “The electrochemical society softbound proceedings series”, Editors NJ PV 90-2 (1990) 89-98.
【8】P. Pfluger, H. U. Knzi, and H. J. Gntherodt, “Discovery of a new reversible electrochromic effect”, Applied Physics Letter 35 (1979) 771-772.
【9】J. Nagao, “Solar energy materials and solar cells”, Materials and Device Technology 31 (1993) 291-296.
【10】S. Gottesfeld, “Anodic rhodium oxide film-2-color electrochromic system”, Journal of the Electrochemical Society 127 (1980) 272-277.
【11】K. Boufker, “Lithiation study of molybdenum oxide thin-films-application to an electrochromic system”, Journal of Applied Electrochemistry 25 (1995) 797-802.
【12】C. K. Dyer and J. S. L. Lech, “Reversible optical changes within anodic oxide films on titanium and niobium”, Journal of the Electrochemical Society 125 (1978) 23-29.
【13】T. Ohtasuka, M. Masuda and N. Sato, “Cathodic reduction of anodic oxide films formed on titanium”, Journal of the Electrochemical Society 134 (1987) 2046-2410.
【14】K. Itaya, K. Shibayama, H. Akahshi and S. Toshima, “Prussian-blue-modified electrodes: an application for a stable electrochromic display device”, Journal of Applied Physics 53 (1982) 804-805.
【15】D. D. Deford and A. W. Davidson, “Studies on the oxidation of potassium ruthenocyanide”, Journal of the American Chemical Society 73 (1951) 1469-1474.
【16】Z. Gao, G. Wang, P. Li and Z. Zhao, “Electrochemical and spectroscopic studies of cobalt-hexacyanoferrate film modified electrodes”, Electrochimica Acta 36 (1991) 147-152.
【17】D. Shaojun and L. Fengbin, “Researches on chemically modified electrodes : part XV. preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode”, Journal of Electroanalytical Chemistry 210 (1986) 31-44.
【18】K. J. Kulesza and M. Faszynska, “Indium (III)-hexacyanof errate as a novel polynuclear mixed-valent inorganic material for preparation of thin zeolitic films on conducting substrates”, Journal of Electroanalytical Chemistry 252 (1988) 461-466.
【19】R. V. Pole, G. T. Sincerbox and M. D. Shattuck, “Photoinduced electrochromic effect and its applications to displays”, Applied Physics Letters 28 (1976) 494-497.
【20】S. C. Yang, “Large-area chromogenic: materials and devices for transmittance control”, SPIE Optics Energetics Press IS4 (1990) 335-365.
【21】F. B. Kaufman, E. M. Engler and A. H. Schroeder, “Electron materical”, Confer Abstract B-1 (1979) 28-35.
【22】S. K. Deb, Applied Optics, supp. 3 (1969) 192.
【23】楊明長,“電致色變系統簡介”,化工,第40卷,第29期,(1993),64-68頁。
【24】謝育忠,“電漿濺鍍電致色變氧化鎳薄膜特性研究與節能評估”,中原大學化學工程學研究所碩士論文,(2002),13頁。
【25】L. Armelao, R. Bertoncello, G. Granozzi, G. Depaoli, E. Tondello and G. Battaglin, “High-purity WO3 sol-gel coatings: synthesis and characterization”, Journal of Materials Chemistry 43 (1994) 407-412.
【26】N. Őzer, “Optical and electrochemical characteristics of sol-gel deposited tungsten oxide films: a comparison”, Thin Solid Films 304 (1997) 310-314.
【27】M. Brogren, G. L. Harding, R. Karmhag, C. G. Ribbing, G. A. Niklasson and L. Stenmark, “Titanium-aluminum-nitride coatings for satellite temperature control”, Thin Solid Films 370 (2000) 268-277.
【28】A. Donnadieu, “Electrochromic materials”, Material Science and Engineering B3 (1989) 185-195.
【29】S. J. Babinec, “A quartz crystal microbalance analysis of ion insertion into WO3”, Solar Energy Material Solar Cells 25 (1992) 269.
【30】P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, “Electrochromism: fundaments and applications VCH weinheim” (1995) 45-46.
【31】A. Maccari, G. Macrelli, P. Polato and E. Poli, “Design, production and characterization of an all solid state electrochromic medium size device”, Solar Energy 63 (1998) 217-229.
【32】C. Chaneliere, J. L. Autran, R. A. B Devine and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications”, Materials Science and Engineering R22 (1998) 269-322.
【33】P. van der Sluis and V. M. M. Mercier, “Solid state Gd-Mg electrochromic devices with ZrO2Hx electrolyte”, Electrochimica Acta 46 (2001) 2167-2171.
【34】T. Saito, Y. Ushio, M. Yamada and T. Niwa, “Properties of tantalum oxide thin film for solid electrolyte”, Solid State Ionics 40-41 (1990) 499-501.
【35】C. Corbella, M. Vives, A. Pinyol, I. Porqueras, C. Person and E. Bertran, “Influence of the porosity of RF sputtered Ta2O5 thin films on their optical properties for electrochromic applications”, Solid State Ionics 165 (2003) 15-22.
【36】http://www.fki.uu.se/research/nano/textfile2/integration3.html/。
【37】A. Azens, G. Gustavsson, R. Karmhag and C. G. Granqvist, “Electrochromic devices on polyester foil”, Solid State Ionics 165 (2003) 1-4.
【38】N. Y. Ma and H. C. Lee, “Applications of chromogenic smart materials”, Industrial Materials 227 (2005) 168-175.
【39】張仕欣、李文錦及張光偉,“調光材料於建築窗戶節能之應用”,工業材料雜誌,第216期,(2004),128-132頁。
【40】B. S. Yu, “Developments in suspended particle pevice (SPD) in optical materials technology for energy efficiency and solar energy conversion XV”, Proceedings SPIE 3138 (1997) 217-225.
【41】http://www.sic.ac.cn/information/seminar/2005/34.htm/。
【42】http://home.howstuffworks.com/smart-window3.htm/。
【43】內田龍男,次世代液晶,東京都,工業調查會,(1994),215-232頁。
【44】http://www.sic.ac.cn/information/seminar/2005/34.htm/。
【45】L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, “Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future”, Advanced Materials 12 (2000) 481-494.
【46】V. Wittwer, “Gaschromic glazing with a large dynamic range in total solar energy transmittance”, In Proceedings of Glass Processing Days (2001) 725.
【47】http://www.computerworld.com/computerworld/records/images/story/Inside_E-paper_e-ink.gif。
【48】http://www.theharrowgroup.com/articles/20050829/20050829.htm/。
【49】R. C. Liang, Jack Hou, HongMei Zang and Jerry Chung, “Passive matrix microcup electrophoretic display”, Paper presented at the IDMC 03 (2004) 1-4.
【50】 http://www.dupont.com.tw/7-a-pf.htm/。
【51】http://www.eedesign.com.tw/article/forum/fo613.htm/。
【52】J. L. He and M. C. Chiu, “Effect of oxygen on the electrochromism of rf reactive magnetron sputter deposited tungsten oxide”, Surface and Coatings Technology 127 (2000) 43-51.
【53】張智傑,“濺鍍氧化鉭薄膜應用於電致色變元件之離子傳導層研究”,逢甲大學材料科學與工程學研究所碩士論文,(2005),30-56頁。
【54】陳文照、曾春風及游信和譯,材料科學與工程,高立圖書有限公司,(1999),745-756頁。
【55】黃崇傑,“塑膠基板沉積ITO薄膜技術”,電子與材料雜誌,第10期,(2001),115-120頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top