跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃子軒
研究生(外文):Tze-Hsuan Huang
論文名稱:超微量鋁摻雜對超細TiN薄膜之抗熱氧化提升效應
論文名稱(外文):Enhancement of Ultrafine TiN Thin Films Against Thermal Oxidation by Lightly Doping of Aluminum
指導教授:陳錦山
指導教授(外文):Giin-shan Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:89
中文關鍵詞:氮化鈦抗氧化濺鍍
外文關鍵詞:TiNTiAlNsputteroxidation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用超高真空直流磁控濺鍍沉積系統,在氬氣及氮氣分壓分別固定3×10-1 Pa、2.66×10-2 Pa的反應性氣氛下,濺擊鈦靶(及鋁靶),以在熱二氧化矽(Si/SiO2)基材上,生長厚度僅20 nm之TiN及Ti0.96Al0.04N、Ti0.92Al0.08N薄膜,並對這三種薄膜試片施加恆溫(350oC~550oC)、30分鐘之氧氣熱處理,以分析Al摻雜對於薄膜抗熱氧化性之差異。
相對片電阻分析及同步輻射X光繞射(XRD)分析結果顯示:經過450oC氧化處理以後,TiN薄膜已局部氧化成金虹石相(Rutile-TiO2),並造成整體片電阻之激烈上升,而Ti0.92Al0.08N薄膜的片電阻僅微幅上升0.2倍,且XRD分析顯示並未產生任何TiO2。此外,二次離子質譜(SIMS)及高解析X光光電子能譜術(HR-XPS)兩種元素縱深分析顯示,經過相同的高溫氧氣環境處理以後,TiN薄膜內部之擴散程度已明顯的大於在Ti0.92Al0.08N的擴散程度,致使後者具有較高的殘留N元素訊號(O元素訊號則相對地較低)。鋁含量稍微降低的Ti0.96Al0.04N之抗氧化能力雖略遜於Ti0.92Al0.08N,但亦優於TiN。這些發現証實鋁摻雜可以有效提升TiN薄膜的高溫熱化學安定性及抗氧化能力。X光反射率比對分析證實:經450oC氧氣熱處理後的TiN與Ti0.92Al0.08N薄膜試片具有明顯差異之反射率週期與振幅,這些差異可能與TiAlN的Al產生偏析,或表面氧化層差異有關。TiAlN之抗氧化機制仍待澄清。
This study used reactive co-sputtering to deposit thin films of TiN and aluminum-minor-doped TiN (Ti0.96Al0.04N and Ti0.92Al0.08N) with a thickness of 20 nm on thermally oxidized SiO2 layer on p-type, (100) silicon. All the films were deposited under an optimal reactive atmosphere of fixed argon (3.0×10-1 Pa) and N2 (2.66×10-2 Pa), and were subsequently subjected to isothermal oxidized (O2) annealing at temperatures ranging from 350 to 550°C for 30 min. Doing so allows the resistance of the films against oxidization to be analyzed using x-ray diffraction (XRD), sheet-resistance measurement, second ion mass spectroscopy (SIMS), high-resolution x-ray photoelectron spectroscopy (HR-XPS), and x-ray reflection measurements.
After annealing at 450°C, TiN thin film was partially transformed into rutile-TiO2, and thus caused a marked increase in film’s overall sheet resistance by eight times. However, the phase (and the overall sheet resistance) of Ti0.92Al0.08N thin film remained as normal even after the identical annealing. Regarding the oxidization resistance, the Ti0.96Al0.04N (with reduced amount of Al) thin film is inferior to Ti0.92Al0.08N thin film, but outperforms TiN. These findings imply that doing a lightly amount of Al indeed can elevate the oxidization resistance of the nitride films. While the spectra of x-ray reflectivity between the samples of TiN and Ti0.92Al0.08N thin films differ significantly, the mechanism of strengthening oxidization by Al doping remains to be clarified.
摘要……………………………………………………………………I
Abstract………………………………………………………………III
目錄……………………………………………………………………IV
圖目錄…………………………………………………………………VI
表目錄………………………………………………………………IX
第1章、前言…………………………………………………………1
第2章、文獻回顧與研究動機…………………………………………5
2.1反應性磁控濺鍍TiN薄膜特性………………………………5
2.1.1反應性磁控濺鍍原理…………………………………5
2.1.2 TiN微結構、物理性質與應用………………………6
2.2 Al摻雜之TiN薄膜衍生之抗氧化薄膜應用…………………8
2.2.1 Al摻雜之TiN薄膜結構與特性……………………8
2.2.2製TiAlN硬膜於高溫抗氧化之應用…………………9
2.2.3 TiAlN擴散阻礙層在銅製程之應用…………………11
2.2.4 TiAlN抗電極氧化薄膜於DRAM之應用…………12
2.3研究主題…………………………………………………14
第3章、實驗步驟………………………………………………………22
3.1薄膜試片製備與後續氧化處理…………………………22
3.1.1薄膜沉積………………………………………………22
3.1.2後續氧化處理…………………………………………23
3.2試片分析………………………………………………24
3.2.1 TiN及TiAlN薄膜氧化現象與分析………………24
3.2.2 TiN及TiAlN薄膜之抗氧化機制探討…………………25
3.3分析儀器簡介………………………………………………26
第4章、結果與討論…………………………………………………42
4.1薄膜基本特性………………………………………………42
4.2薄膜抗熱氧化特性-電性分析……………………………44
4.3薄膜抗熱氧化特性-相與結構分析(XRD/XAS)…………45
4.4薄膜抗熱氧化特性-SIMS縱深分佈分析…………………48
4.5薄膜抗熱氧化特性-HR-XPS縱深分佈分析……………51
4.6薄膜抗熱氧化特性-反射率分析…………………………55
第5章、結論…………………………………………………………72
參考文獻………………………………………………………………74
圖 目 錄
圖1.1 DRAM之結構示意圖……………………………………………4
圖2.1 TiN平衡相圖…………………………………………………16
圖2.2晶體結構示意圖(a)TiN;(b)TiAlN………………………17
圖2.3 Al元素在TiAlN薄膜內之三種高溫擴散行………………18
圖2.4模擬MIM元件示意圖…………………………………………19
圖2.5腐蝕電位(Ecorr)對應腐蝕電流(Icorr)之極化曲線分析圖 (a)剛沉積TiN薄膜(b)剛沉積TiAlN薄膜…………………………20
圖3.1超高真空濺鍍系統結構示意圖………………………………32
圖3.2高溫水平管爐示意圖…………………………………………33
圖3.3薄膜特性掌握與抗熱氧化評估流程之示意圖…………………34
圖3.4傳統掠角X光繞射儀分析熱處理前後之TiN薄膜試片繞射圖譜………………………………………………………………35
圖3.5階梯量測薄膜厚度的示意圖…………………………………36
圖3.6四點探針量測薄膜片電阻示意圖………………………36
圖3.7典型之X光反射率實驗配置示意圖……………………37
圖3.8在Si基材上沉積10 nm之Pt與30 nm之Ti薄膜之理論X光反射率曲線…………………………………………………37
圖3.9本實驗使用之掠角XRD分析示意圖………………………38
圖3.10材料表面二次離子產生示意圖……………………………38
圖4.1沉積速率與電阻率對應Al靶功率之關係圖………………57
圖4.2剛沉積薄膜之平視野穿透式電子顯微照片:(a)TiN明場與暗場(右下插圖)影像,(b)TiAlN明場與暗場(右下插圖)影像………………………………………………………………58
圖4.3片電組相對變化量(rRs/Rs)對應氧氣氛退火溫度曲線( Rs = 剛沉積試片電阻、Rs = 退火前、後片電阻差)關係圖。(a)Si/SiO2/TiN、(b) Si/SiO2/ Ti0.96Al0.04N、(c) Si/SiO2/ Ti0.92Al0.08N……………………………………………………59
圖4.4 TiN薄膜在不同氧氣退火溫度之XRD繞射圖譜……………60
圖4.5 (a)TiN薄膜,經O2/550oC/30 min.氧氣環境熱處理後之Ti K-edge吸收光譜(17C光束線)、(b)文獻所示之TiO2 Ti K-edge吸收光譜。…………………………………………………………61
圖4.6 Ti0.92Al0.08N薄膜在不同氧氣退火溫度之XRD繞射圖譜………………………………………………………………62
圖4.7 氧氣退火熱處理30 min.之Si/SiO2/TiN試片SIMS縱深圖譜。(a)剛沉積、(b) 350oC、(c)450oC及(d)550oC…………………63
圖4.8 氧氣退火熱處理30 min.之Si/SiO2/ Ti0.96Al0.04N試片SIMS縱深圖譜。(a)剛沉積、(b) 350oC、(c)450oC及(d)550oC……………64
圖4.9 氧氣退火熱處理30 min.之Si/SiO2/ Ti0.92Al0.08N試片SIMS縱深圖譜。(a)剛沉積、(b) 350oC、(c)450oC及(d)550oC…………65
圖4.10氧氣退火熱處理30 min.之Si/SiO2/ TiN試片HR-XPS縱深圖譜。(a)剛沉積、(b) 425oC、(c) 450oC………………………66
圖4.11氧氣退火熱處理30 min.之Si/SiO2/ Ti0.96Al0.04N試片HR-XPS縱深圖譜。(a)剛沉積、(b) 450oC……………………………67
圖4.12氧氣退火熱處理30 min.之Si/SiO2/ Ti0.92Al0.08N試片HR-XPS縱深圖譜。(a)剛沉積、(b) 425oC、(c) 450oC………………68
圖4.13 Si/SiO2/ TiN與Si/SiO2/ Ti0.92Al0.08N試片經過450oC氧氣退火熱處理30 min.之反射率分析曲線。…………………………69

表 目 錄
表1.1用於DRAM之高介電常數材料…………………………………4
表2.1 Al含量與結構關係……………………………………………21
表2.2 TiAlN應用於傳統熱機械硬膜、DRAM中之抗電極氧化薄膜、與本實驗室所研究之擴散阻礙層之比較………………21
表3.1 SCⅠ與SCⅡ成分及主要優缺點………………………………40
表3.2反應性濺鍍沉積Ti(Al)N薄膜之整體製程條件……………40
表3.3四點探針電阻率換算修正因子對照表………………………41
表4.1剛沉積TiN、Ti0.96Al0.04N及Ti0.92Al0.08N薄膜之原子百分比…………………………………………………………70
表4.2 450oC氧氣退火熱處理後之TiN、Ti0.96Al0.04N及Ti0.92Al0.08N薄膜表面原子百分比…………………………………71
表4.3 450oC氧氣退火熱處理後的TiN、Ti0.96Al0.04N及Ti0.92Al0.08N薄膜濺擊深度為75 sec之原子百分比………………71
表4.4 450oC氧氣退火熱處理後的TiN、Ti0.96Al0.04N及Ti0.92Al0.08N薄膜濺擊深度為130 sec之原子百分比……………71
參考文獻
[1] R. H. Dennard, Field effect transistor memory, U. S. Patent 3, 387,286, grantedJune 4 (1968)
[2] 府玠辰, 利用Al摻雜強化TiN薄膜對銅之擴散阻礙能力, 逢甲大學材料科學與工程研究所碩士論文 (2003)
[3] G. S. Chen, C. C. Fu, L. C. Yang, C. S. Hsu, J. M. Zuo and B. Q. Lee, Strengthening TiN diffusion barriers for Cu metallization by lightly doping Al, Applied Physics Letters, 87, 121911 (2005)
[4] B. Roberts, A. Harrus and R. L. Jackson, Interconnect Metallization for Future Device Generations, Solid State Technol., Feb, pp. 69-78 (1995)
[5] M. A. Nicolet, Diffusion Barriers In Thin Films, Thin Solid Films, 52, pp. 415-443 (1978)
[6] W. Tsai, D. Hodul and T. Sheng, Variation of composition of sputtered TiN film as a function of target nitridation, thermal anneal, and substrate topography, Appl. Phys. Lett., 67(2), 10 (1995)
[7] M. Y. Kwak, D. H. Shin, T. W. Kang and K. N. Kim, Characteristics of TiN barrier layer against Cu diffusion, Thin Solid Films, 339, pp. 290-293 (1999)
[8] K. Abe, Y. Harada and H. Onoda, Study of crystal orientation in Cu film on TiN layered structures. J. Vac. Sci. Technol. B, 17(4), pp. 1464-1469 (1999)
[9] J. S. Reid, X. Sun, E. Kolawa and M. –A. Nicolet, Ti-Si-N diffusion barriers between silicon and copper, IEEE Electron Device Letters, 15, pp. 298-300 (1994)
[10] S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suthar, S. Redkar and K. B. Kim, Reactively sputtered TiN as a diffusion barrier between Cu and Si, J. Appl. Phys., 68(10), pp. 5176-5187 (1990)
[11] U. WahlstrÖm, L. Hultman, J. -E. Sundgren, F. Adibi, I. Petrov and J. E. Greene, Crystal growth and microstructure of polycrystalline Ti1−xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering, Thin Solid Films, 235, pp. 62-70 (1993)
[12] Y. Tanaka, T. M. Gur, M. Kelly, S. B. Hagatrom and T. Ikeda, Structure and properties of (Ti1−xAlx)N films prepared by reactive sputtering, Thin Solid Films, 228, pp. 238 (1993)
[13] N. Yanase, K. Sano, K. Abe and T. Kaeakubo, Epitaxial Growth of Ti1- xAl xN Buffer Layer for a Ferroelectric (Ba, Sr)TiO3 Capacitor on Si Substrate, Jpn. J. Appl. Phys., Part 2 37, L151 (1998)
[14] S. Inamura, K. Nobugai and F. Kanamaru, J. Solid State chem., 68, pp. 124 (1987)
[15] T. Ikeda and H. Satoh, Phase formation and characterization of hard coatings in the Ti-Al-N system prepared by the cathodic arc ion plating method, Thin Solid Films, 195, pp. 99 (1991)
[16] K. H. Kim and S. H. Lee, Comparative studies of TiN and Ti1−xAlxN by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/H2/Ar gas mixture, Thin Solid Films, 283, pp. 165 (1996)
[17] A. Joshi and H. S. Hu, Oxidation behavior of titanimun-aluminum nitrides, Surf. Coat. Technol., 76, pp. 499-507 (1995)
[18] F. Vaz, L. Rebouta, M. Andritschky, M. F. da Silva and J. C. Soares, Thermal Oxidation of Ti1-XAlXN Coatings in Air, J. Euro. Ceram. Soc., 17, pp. 1971-1977 (1997).
[19] F. Esaka, K. Furuya, H. Shimada, M. Imamura, N. Matsubayashi, T. Kikuchi, H. Ichimura and A. Kawana, Composition Dependence of the Initial Oxidation Behaviour of Ti1-XAlXN (x=0.20, 0.45, 0.65) Films Studied by XAS and XPS, Surf. Interface Anal., 27, pp. 1098-1106 (1999).
[20] Ding Fwu Lii, The effects of aluminium composition on the mechanical properties of reactivity sputtered TiAlN films, Journal of Materials science, 33, pp.2137-2145 (1998)
[21] O. Knotek, W. D. Munz, T. Leyendecker, J. Vac. Sci. Technol.,A5 (4) pp. 2173-2179 (1987)
[22] D. Mclntyre, J. E. Greene, G. Hakansson, J. E. Sundgren, W. D. Munz, J. Appl. Phys., 67 (3), pp.1542-1553 (1990)
[23] S. Inoue, H. Uchide, Y. Yoshinaga and K. Koterazawa, Oxidation behavior of (Ti1-XAlX)N films prepared by r.f. reactive sputtering, Thin Solid Films, 300, pp. 171-176 (1997)
[24] W. D. Munz, Titanium aluminum nitride films: A new alternative to TiN coatings, J. Vac. Sci. Technol. A, 4(6), pp. 2717-2725 (1986)
[25] Chung Wan Kim, Kwang Ho Kim, Anti-oxidation properties of TiAlN film prepared by plasma-assisted chemical vapor deposition and roles of Al, Thin Solid Films, 307, pp.113-119 (1997)
[26] R. Wuhrer and W. Y. Teung, A study on the microstructure and property development of d.c. magnetron co-sputtered ternary titanium aluminum nitride coatings, J. Mater. Sci., 37, pp. 3477-3482 (2002).
[27] A. Kimura, H. Hasegawa, K. Yamada and T. Suzuki, Metastable Ti1-XAlXN films with different Al content, J. Mater. Sci. Lett., 19, pp. 601-602 (2000)
[28] M. Y. Kwak, D. H. Shin, T. W. Kang and K. N. Kim, Characteristics of TiN barrier layer against Cu diffusion, Thin Solid Films, 339, pp. 290-293 (1999)
[29] K. Abe, Y. Harada and H. Onoda, Study of crystal orientation in Cu film on TiN layered structures. J. Vac. Sci. Technol. B, 17(4), pp. 1464-1469 (1999)
[30] J. S. Reid, X. Sun, E. Kolawa and M. –A. Nicolet, Ti-Si-N diffusion barriers between silicon and copper, IEEE Electron Device Letters, 15, pp. 298-300 (1994)
[31] S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suthar, S. Redkar and K. B. Kim, Reactively sputtered TiN as a diffusion barrier between Cu and Si, J. Appl. Phys., 68(10), pp. 5176-5187 (1990)
[32] K. Y. Lim, Y. S. Lee, Y. D. Chung, I. W. Lyo, C. N. Whang, J. Y. Won and H. J. Kang, Grain boundary diffusion of Cu in TiN film by X-ray photoelectrin spectroscopy, Appl. Phys. A, 70, pp. 431-434 (2000)
[33] P. Motte, M. Proust, J. Torres, Y. Gobil, Y. Morand, J. Palleau, R. Pantel and M. Juhel, TiN-CVD process optimization for integration with Cu-CVD, Microelectronic Engineering, 50, pp. 369-374 (2000)
[34] S. Riedel, S. E. Schulz, J. Baumann,M. Rennau and T. Gessner, Influence of different treatment techniques on the barrier properties of MOCVD TiN against copper diffusion, Microelectronic Engineering, 55, pp. 213-218 (2001)
[35] X. Sun, J. S. Reid, E. Kolawa and M. –A. Nicolet, Reactively sputtered TiSiN films Ⅱ Diffusion barrier for Al and Cu metallization on Si, J. Appl. Phys., 81(2), pp. 664-671 (1997)
[36] D. F. Lii, J. L. Huang and J. F. Lin, Preperties of interfaces in Cu/Ti1-AlN/Si multilayers, Surf. Coat. Technol., 176. pp.115-123 (2003)
[37] Sam Dong Kim, In Seok Hwang, Jin Koo Rhee, Tae Ho Cha, and Heon Do Kim, Oxidation Resistance of Sputtered Ti1-xAlxN Films for Complementary Metal Oxide Semiconductor Storage Node Electrode Barriers, Electrochemical and Solid-State Letter, 4 (1), G7-G10 (2001)
[38] Dae Gyu Park, Tae Ho Cha, Sang Hyeob Lee, In Seok Yeo, Jim Won Park, and Sam Dong Kim, Characteristics of sputtered Ti1-xAlxN Films for storage node electrode barriers, J. Vac. Sci. Technol. B, 19 (6). Nov/Dec (2001)
[39] Sam Dong Kim, Jin Koo Rhee, and Hyung Moo Park, Properties of reactive sputtered Ti1-xAlxN Films for complementary metal-oxide-semiconductor silicon storage node electrode diffusion barriers, J. Vac. Sci. Technol. B, 21(2), Mar/Apr (2003)
[40] Yong Ju Lee, Sang Won Kang, Antioxidation properties of Ti0.83Al0.17N prepared using plasma-enhanced atomic layer deposition, Applied Physics Letters, 86, 071919 (2005)
[41] Y. G.. Gogotsi, F. Porz, and G. Dransfield, Oxid. Met., 39, pp.69 (1993)
[42] A. Tempez, A. Bensaoula and A. Schultz, Characterization of TiAlN thin film annealed under O2 by in situ time of flight recoil spectroscopy/mass spectroscopy of recoiled ions and ex situ x-ray photoelectron spectroscopy, J. Vac. Sci. Technol. A, 20(4), pp. 1320-1326 (2002)
[43] J.P. Bars, E. Etchessahar, J. Debuigne, J. Less-Common Metals, 52 , pp.51-76 (1977)
[44] 李信義, X光反射率於薄膜分析上之應用, 科儀新知第二十二卷第二期, pp.39-46
[45] 材料分析, 汪建民主編, 中國材料科學會 (1998)
[46] Y. Matsui, M. Hiratani, Y. Nakamura, I. Asano and F. Yano, Formation and oxidation properties of (Ti1-XAlX)N thin films prepared by dc reactive sputtering, J. Vac. Sci. Technol. A, 20(3), pp. 605-611 (2002)
[47] 楊宗燁, 林鴻明, 吳泉毅, 林中魁, 奈米材料之X光吸收光譜檢測分析, 物理雙月刊廿三卷六期, pp.640-646 (2001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top