跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王劭維
研究生(外文):Shao-wei Wang
論文名稱:具異質表面電荷雙T型微通道內電滲流混合特性之三維數值模擬
論文名稱(外文):Three-Dimensional Numerical Simulation for the Mixing Characteristics of Electroosmotic Flow in Double T-Shaped Microchannels with Heterogeneous Surface Charge
指導教授:黃柏文黃柏文引用關係
指導教授(外文):Po-Wen Hwang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:101
中文關鍵詞:電滲流
外文關鍵詞:Electroosmotic Flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要以數值模擬的方式探討電滲流流場具異質表面電荷之混合特性,針對壁面具異質表面電荷之雙T型微通道,並以不同注入方式進行二維與三維數值模擬。本文建立一個雙T型數值模型,分別在側壁與上下壁配置不同異質表面電荷,賦予不同注入模式,在定常態下觀察各個參數對混合特性的影響,並從中找出較佳的組合。
本研究發現,交錯(B)注入模式能增加異質流體間之接觸面以提升混合效率。具非對稱式異質表面電荷側壁在側壁處產生迴流區,增長異質流體間之混合路徑,可提高混合效率約15%。上下壁具斜紋式異質表面電荷可造成螺旋流效果從而增加接觸面積,可增進混合效率約25%。在耦合異質表面電荷側壁與上下壁,非對稱式與斜紋式在交錯(B)注入模式下,混合效率可達95%。即使增加電場強度(100~800V/cm),其混合效率仍能維持在95~89%。
In this study, the influences of different injection mode and heterogeneous surface charge on mixing characteristic of electroosmotic flow in double T-shaped microchannel are investigated by using numerical simulation. The surface heterogeneity is adopted on sidewalls and/or top/bottom walls.
It is found that trans-injection (injection mode B) can increase the contact surface among fluids to improve mixing efficiency. Sidewalls with asymmetric heterogeneous surface charge, which can produce recirculation zone near the walls causing the increase of mixing path, can increase mixing efficiency about 15%. Top and bottom walls with diagonal heterogeneous surface charge can lead to the occurrence of spiral flows, which can increase the contacting area between different fluids, resulting promotion of mixing efficiency about 25%. Under trans-injection mode, when sidewalls with asymmetric heterogeneous surface charge and top/bottom walls with diagonal heterogeneous surface charge are adopted, the mixing efficiency can up to 95%. When the driving electric field strength is increased (100~800V/cm), its mixing efficiency can still be operated at 95~89%.
誌謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VI
符號說明 XI
第一章 前言與文獻回顧 1
1-1前言 1
1-2文獻回顧 3
第二章 理論模式與數值方法 8
2-1 理論模式 8
2-2 數值方法 13
2-3 邊界條件 16
第三章 結果與討論 20
3-1 不同注入方式對混合之影響 21
3-2 異質側壁對混合之影響 22
  3-2-1 A注入法 22
3-2-2 B注入法 24
3-3 異質上下壁面對混合之影響 25
3-3-1 A注入法 26
3-3-2 B注入法 27
3-4 耦合異質側壁及上下壁對混合之影響 29
3-4-1 A注入法 29
3-4-2 B注入法 30
3-5 電場驅動力對混合之影響 31
第四章 結論與未來展望 32
4-1 結論 32
4-2 未來展望 33
參考文獻
[1] D. R. Reyes, D. Iossifidis, P. A. Auroux, A. Manz, “Micro Total Analysis Systems. 1. Introduction, Theory, and Technology,” Analytical Chemistry, Vol. 74, No. 12, pp. 2623-2636 (2002).
[2] S. Shoji, “Micro Total Analysis Systems (mTAS),” Electronics and Communications in Japan, Part 2, Vol., 82, No. 2, pp. 21-29 (1999).
[3] S. Shoji, “Micro Total Analysis Systems,” Sensors Update, Vol. 6, No. 1, pp. 3-17 (2001).
[4] S. J. Lee, and S. Y. Lee, “Micro Total Analysis System (m-TAS) in Biotechnology,” Applied Microbiology and Biotechnology, Vol. 64, pp. 289-299 (2004).
[5] D. Li, “Electro-Viscous Effects on Pressure-Driven Liquid Flow in Microchannels,” Colloids and Surface A, Vol. 195, pp. 35-57 (2001).
[6] N. A. Patankar, and H. H. Hu, “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Vol. 70, pp. 1870-1881 (1998).
[7] P. Dutta, A. Beskok, and T. C. Warburtion, “Electroosmotic Flow Control in Complex Microgeometries,” Journal of Microelectromechanical System, Vol. 11, No. 1, pp. 36-44 (2002).
[8] R. J. Yang, L. M. Fu, and C. C. Hwang, “Electroosmotic Entry Flow in a Microchannel,” Journal of Colloid and Interface Science, Vol. 244, pp. 173-179 (2001).
[9] R. J. Yang, L. M. Fu, and Y. C. Lin, “Electroosmotic Flow in Microchannels,” Journal of Colloid and Interface Science, Vol. 239, pp. 98-105 (2001).
[10]黃柏文、宋齊有、夏育群、楊瑞彬,”不同流況下微通道內具高Zeta電位電動力流場之數值模擬,”第十一屆全國計算流體力學學術研討會,CFD11-1923(2004)。
[11] D. Erickson, and D. Li, “Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing,” Langmuir, Vol. 18, pp. 1883-1892 (2002).
[12] S. H. Wong, M. C. L. Ward, and C. W. Wharton, “Micro T-mixer as a rapid mixing micromixer,” Sensors and Actuators B, Vol. 100, pp. 359-379 (2004).
[13] L. M. Fu, R. J. Yang, C. H. Lin, and Y. S. Chien, “A Novel Microfluidic Mixer Utilizing Electrokinetic Driving Forces under Low Switching Frequency,” Electrophoresis, Vol 5, pp. 1814-1824(2005).
[14] E. Biddiss, D. Erickson, and D. Li, ”Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows,” Analytical Chemistry, Vol. 76, pp. 3208-3213 (2004).
[15] Y. Hu, C. Werner, and D. Li, “Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels,” Journal of Colloid and Interface Science, Vol. 280, pp. 527-536 (2004).
[16] A. S. W. Ng, W. L. W. Hau, and Y. K. Lee, “Electrokinetic Gneration of Mcrovortex Ptterns in a Microchannel Liquid Flow,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 247-255 (2004).
[17] Z. Chen, M. Athavale, and A. Przekwas, “Numerical Simulation of Electroosmotic Flow in Micro Channels with Analytical Integration of Surface Potential,” Nanotech, Vol. 1, pp. 186-189 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top