跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 04:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高子婷
研究生(外文):Tzu-Ting Kao
論文名稱:以集群分析探討結構性改變-以台灣加權股價指數為例
論文名稱(外文):A Study of Structural Changes in Taiwan Stock Index by Clustering Analysis
指導教授:黃焜煌黃焜煌引用關係
指導教授(外文):Kun-Huang Huarng
學位類別:碩士
校院名稱:逢甲大學
系所名稱:國際貿易所
學門:商業及管理學門
學類:貿易學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:72
中文關鍵詞:K-means過渡性結構性改變股價指數
外文關鍵詞:K-meansstock indextransient structural changes
相關次數:
  • 被引用被引用:16
  • 點閱點閱:614
  • 評分評分:
  • 下載下載:118
  • 收藏至我的研究室書目清單書目收藏:1
資料探勘是近幾年來非常受歡迎的研究方法之一,其應用的範圍可以包含各個領域,而本篇研究所使用的方法即是資料探勘中的集群分析,藉由集群理論的概念將欲研究的大量資料進行分類,把相似度高的樣本至於同一集群 (Cluster)中,不同集群間具有高度的差異性,藉此有效將資料進行群聚。我們便以此概念將台灣加權股價指數作為我們的實證研究,來找出其結構性改變的地方。
  本文從台灣加權股價指數的波動,藉由Statistica統計軟體將指數經過集群分析K-means演算法,將資料分成三群,集群分析後所得到結果,若由最低的集群一轉至最高的集群三或由最高集群三轉折至最低集群一,之間沒有來回的轉折,就視為結構性改變;若僅在集群一與集群二或集群二與集群三之間波動,則我們視為過渡性結構改變。本篇研究結果發現台灣加權股價指數在1990至2004年間產生三次結構性改變,多次過渡性結構改變。並根據過去學者指出,結構改變的同時經常伴隨著重大事件影響股價產生結構性改變的因素,因此我們加以就國內政治、經濟、國際因素等重要事件來驗證我們的研究方法是否是一個理想的分析工具。
  最後的分析結果在三次結構性改變都可以找出歷史性的重大事件,並找出相關文獻加以佐證;但在過渡性結構改變的時間上,所產生的事件我們將認定為其帶來的效應、影響等不足以造成結構改變。
The study of structural changes has become an interesting topic in time series study. This study applies clustering analysis to detect the structural changes in Taiwan Weighted Stock Index (TAIEX). We use the Statistica software to analysis the data. The stock index is first clustered into three groups by K-means algorithm. The most well-known and commonly used method of clustering is the K-means algorithm. Then the structural changes are recognized only when the index moves from the lowest clusters to the highest ones, and vice versa. The transient structural change means that the stock index moves between Cluster 1 and Cluster 2 or Cluster 2 and Cluster 3.
From 1990 to 2004, there were three structural changes and several transient structural changes in this time series. The obtained results give reason for thinking that they are very significant since they coincide with important facts and economic events. We find some important events during the structural change period. The K-means algorithm is good to find the structural changes.
第一章 序論 1
第二章 文獻回顧 3
第一節 結構改變 3
第二節 股價指數與總體經濟的關係 9
第三章 資料 15
第四章 研究方法 17
第一節 資料探勘 17
第二節 K-means 22
第三節 結構性改變定義 25
第五章 實證結果 28
第一節 結構改變 30
第二節 過渡性結構改變 34
第六章 結論 39

參考資料: 42
附錄一:統計結果 49
附錄二:英文摘要 51
1. 中文文獻:
[1]史光榮、黃世杰、林矩民 (2002),整合間隙統計法與碎型理論之K-means演算法,第七屆人工智慧與應用研討會論文。
[2]台灣經濟新報資料庫
[3]白元宏 (2002),台灣證券市場股價指數與總體經濟變數之關聯性實證探討,財務管理學系碩士論文。
[4]朱富春 (1978),股價分析,台北聯經出版事業公司,第三次印行。
[5]朱磊 (2005),臺灣股票市場波動研究,中國網。
[6]行政院經建會 (2002),中華民國90年國家建設計畫執行檢討。
[7]吳忠吉 (2003),業界與勞工的處境,失業問題研討會。
[8]吳忠吉 (2004),臺灣經濟與兩岸貿易分析,世界經濟與政治論壇,第1期。
[9]吳柏林 (1996),模糊時間數列分析與經濟預測之探討,國科會研究報告。
[10]吳柏林 (1997),非線性時間數列轉折區間之模糊分類研究,國科會研究報告。
[11]吳柏林、曾淑惠、吳志文 (1994),一個結構化轉變ARIMA模式的建立及其應用,國立政治大學學報,69,173-195。
[12]吳欽杉,劉維琪和林楚雄 (1999),不對稱GARCH模型的研究,管理學報,第十六卷第三期,479-515。
[13]林芝儀 (2002),應用資料探勘於信用卡授信決策模式之實證研究,元智大學工業工程與管理學系碩士論文。
[14]林鐘雄 (1991),防制地下金融活動問題之研究,行政院研考會。
[15]胡光華 (1997),股價指數語總體經濟變數之因果關係,東吳大學經濟學系碩士論文。
[16]曹紅輝 (2005),匯率變動與證券市場的關係,上海證券報。
[17]陳尚懋、郭承天 (2003),台灣金融體系的制度改革-親信資本主義的延續或終結?
[18]程友梅 (1996),轉折型時間序列的認定,政治大學統計學系碩士論文。
[19]黃子祐 (2002),股價與景氣指標關聯性之研究-以台灣股市為例,朝陽科技大學財務金融系碩士論文。
[20]經濟部研究發展委員會,1997年國內外經濟情勢分析,第三卷第一期。
[21]鄭怡君、盧樂人、常雅蕙 (1999),股價指數是否為經濟表現的領先指標,中原大學國際貿易學系專題報告。
[22]蕭碧華 (2005),3000圓投資全世界,高寶出版社。
[23]簡宏宇 (2004),基於關聯式規則在影響個股漲跌之財經新聞事件探勘之應用研究,台灣師範大學工業教育學系碩士論文。
[24]魏宏泰 (2003),台灣股價與總體經濟變數關係之實證研究,朝陽科技大學財務金融系碩士論文


2. 西文文獻:
[1]Agosin, M. R. (2001), Financial crises in “successful” emerging economies, chapter 2, Brookings Institution Press.
[2]Aïssa, M. S. B. and Jouini, J. (2003), Structural breaks in the U.S. inflation process, Applied Economics Letters, 10, 633-636.
[3]Aïssa, M. S. B., Boutahar, M., and Jouini, J. (2004), Bai and Perron''s spectral density methods for structural change detection in the US inflation process, Applied Economics Letters, 11, 109-115.
[4]Anderberg, M. R. (1973), Cluster analysis for applications, New York: Academic Press.
[5]Andrews, D. W. K. (1993), Tests for parameter instability and structural change with unknown change point, Econometrica, 61(4), 821– 856.
[6]Andrews, D. W. K. and Ploberger, W. (1994), Optimal tests when a nuisance parameter is present only under the alternative, Econometrica, 62(6), 1383-1414.
[7]Arestis, P. and Mariscal, I. B-F. (1999), Unit roots and structural breaks in OECD unemployment, Economics Letters, 65(2), 149-156.
[8]Bai, J. and Perron, P. (1998), Estimating and testing linear models with multiple structural changes, Econometrica, 66, 47–78.
[9]Banerjee, A. and Urga, G. (2005), Modelling structural breaks, long memory and stock market volatility: an overview, Journal of Econometrics, 129(1-2), 1-34.
[10]Berry, J. A. and Linoff, G. (1997), Data mining techniques for marketing, sales, and customer support, John Wiley & Sons, New York.
[11]Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., and Simoudis, E. (1996), Mining business databases, Communication of the ACM, 39(11), 42-48.
[12]Broemeling, L. D. and Tsurumi, H. (1987), Econometrics and structural change, Marcel Dekker Inc.
[13]Brown, R.L., Durbin, J. and Evans, J.M. (1975), Techniques for testing the constancy of regression relationships over time, Journal of the Royal Statistical Society, Series B, 37, 149-192.
[14]Budd, J. W. and Nho, Y. (1997), Testing for a structural change in U.S. wage determination, Industrial Relations, 36(2), 160-177
[15]Cabena, P., Hadjinlan, P. and Stadler, R. etc. (1998), Discovering data mining from concept to implementation, Prentice-Hall Inc., 41-59.
[16]Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996), From data mining to knowledge discovery, American Association for Artificial Intelligence, 37-54.
[17]Gao, K. (2003), The K-means tree, Yale university.
[18]Gregory, A. W., and Hansen, B. E. (1996), Residual-based tests for cointegration in models with regime shifts, Journal of Econometrics, 70, 99-126.
[19]Han, J. and Kamber, M. (2001), Data mining: concepts and techniques, San Francisco: Morgan Kaufmann Publishers.
[20]Hansen, B. E. (2001), The new econometrics of structural change: dating breaks in U.S. labor productivity, Journal of Economic Perspectives, 15, 117-128.
[21]Hush, D.R., Salas, J. M., and Horne, B. (1992), Error surfaces for milti-layer perceptions, IEEE Transactions on Systems, Man and Cybernetics, 22(5).
[22]Jain, A. K. and Dubes, R. C. (1988), Algorithms for clustering data, Englewood Cliffs: Prentice Hall.
[23]Jouini, J. and Boutahar, M. (2005), Evidence on structural changes in U.S. time series, Economic Modelling, 22, 391-422.
[24]Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu, A. Y. (2002), An efficient k-means clustering algorithm: analysis and implementation, IEEE Transactions on Pattern an Analysis and Machine Intelligence, 24(7), 881-892.
[25]Kaufman, L. and Rousseeuw, P. J. (1990), Finding groups in data, New York: Wiley.
[26]Kim, I-M. (1997), Detecting the number of structural breaks, Economics Letters, 57, 145-148.
[27]Kumar, K. and Wu, B. (2001), Detection of change points in time series analysis with fuzzy statistics, International Journal of Systems Science, 32(9), 1185-1192.
[28]Kuo, R. J., Wang, H. S., Hu, T-L., and Chou, S. H. (2005), Application of ant K-means on clustering analysis, Computers and Mathematics with Applications, 50, 1709-1724.
[29]Lee, C-C. and Chang, C-P. (2005), Structural breaks energy consumption, and economic growth revisited: evidence from Taiwan, Energy Economics, 27, 857-872.
[30]Mankiw, N. G. (2003), Macroeconomics, Fifth edition, New York: Worth Publishers.
[31]Nasseh, A. and Strauss, J. (2000), Stock prices and domestic and international macroeconomic activity: a cointegration approach, The Quarterly Review of Economics and Finance, 40, 229–245
[32]Peña, J. M., Lozano, J. A., and Larrañaga, P. (1999), An empirical comparison of four initialization methods for the K-means algorithm, Pattern Recognition Letter, 20, 1027-1040.
[33]Ploberger, W., Kramer, W., and Kontrus, K. (1989), A new test for structural stability in the linear regression model, Journal of Econometrics, 40, 307-318.
[34]Ralambondrainy, H. (1995), A conceptual version of the K-means algorithm, Pattern Recognition Letters, 16, 1147-1157.
[35]Rapach, D. E. (2001), Macro shocks and real stock prices, Journal of Economics and Business, 53, 5–26.
[36]Roiger, R. J. and Geatz, M. W. (2003), Data mining: a tutorial-based primer, Addison Wesley.
[37]San, O.M., Huynh, V., and Nakamori, Y. (2004), An alternative extension of the K-means algorithm for clustering categorical data, Int. J. Appl. Math. Comput. Sci., 14(2), 241-247.
[38]Tian, J., Zhu, L., Zhang, S., and Liu, L. (2005), Improvement and parallelism of K-means clustering algorithm, Tsinghua Science and Technology, 10(3), 277-281.
[39]Wu, B. and Chen, M-H. (1999), Use of fuzzy statistical technique in change periods detection of nonlinear time series, Applied Mathematics and Computation, 99, 241-254.
[40]Wu, J-L. (1997), Foreign exchange market efficiency and structural instability: evidence from Taiwan, Journal of Macroeconomics, 19(3), 591–607.
[41]Zhou, H. D. (2005), Nonlinearity or structural break? - data mining in evolving financial data sets from a Bayesian model combination perspective, Proceedings of the 38th Hawaii International Conference on System Sciences.




3. 網路資源:
[1]理財精算網,http://www.richmall.com.tw/newrich/richmall/richmall.asp
[2]臺灣的故事,http://www.gio.gov.tw/info/taiwan-story/economy/chome.htm
[3]臺灣證券交易所,http://www.tse.com.tw/ch/products/indices/tsec/taiex_2.php
[4]Yahoo!股市,http://tw.stock.yahoo.com/d/inv/w/2001/11/12/barits/5956.html
[5]德盛安聯投顧提供,http://www.gogofund.com/fund/fund_issue.asp?ID=32575 
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top