跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂侑儒
研究生(外文):You-Ru Lyu
論文名稱:光學薄膜表面特性量測系統之研製
論文名稱(外文):Implementation of Surface Characteristics Measuring System for Optical Thin Films
指導教授:田春林
指導教授(外文):Chuen-Lin Tien
學位類別:碩士
校院名稱:逢甲大學
系所名稱:產業研發碩士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:65
中文關鍵詞:表面檢測小波轉換快速傅立葉轉換細線化
外文關鍵詞:wavelet transformsurface measuringthinningfast fourier transform
相關次數:
  • 被引用被引用:1
  • 點閱點閱:443
  • 評分評分:
  • 下載下載:109
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一套自行研發之光學薄膜表面量測系統,此系統以Twyman-Green干涉儀為其架構並結合自行設計的軟體程式,將等傾干涉圖形利用小波轉換分成高、低頻呈現,並搭配灰階共生矩陣(GLCM)與熵值(Entropy)運算,以快速測定薄膜表面平坦度之良窳。此外,小波轉換、灰階共生矩陣、熵值運算等方法也可應用於人眼虹膜影像之辨識,此研究初步成果之辨識率優於93.75%。
若干涉儀以平面鏡和待測薄膜表面微傾一小角度的架構,則可獲得等厚干涉圖形,此架構可用來檢測薄膜厚度、重建其3D表面輪廓並利用表面曲率之擬合,求取薄膜之應力。依據光學干涉原理,本文中所發展的系統軟體程式具有多樣檢測功能。首先,利用干涉圖形之細線化,可使程式精確地自動判別條紋之間距與條紋位移量,達成量測膜厚之目的。其次,透過空間載波頻率,可利用快速傅立葉轉換(FFT)有效地將相位和光強資訊分離,達到3D表面輪廓重建之目的,並藉此進行薄膜表面曲率之擬合,測定薄膜之應力。
本研究已成功應用小波轉換、灰階共生矩陣、快速傅立葉轉換、相位還原等技術,建構出一套多功能光學薄膜表面特性檢測系統。
We proposed a measurement system for the surface characteristics of the optical thin films including the relative surface flatness, thickness, surface contour and internal stress. The experimental technique was based on the Twyman-Green interferometry. The wavelets transform, gray-level co-occurrence matrix and entropy were used to evaluate the surface flatness. The proposed method can also be used for recognizing the human’s iris.

In this thesis, we used the Wiener filter to reduce the noise of the image, then processed it by thinning interference fringes to recognize the shift of the fringe spacing and step height automatically. According to the spatial carrier frequency, we can use the fast Fourier transform to divide the information of the phase and the intensity. To reconstruct the surface contour, the curve fitting of coating surface was performed. After calculating the curvatures before and after film deposition, the stress of thin films can be determined by using the Stoney’s formula.

We have developed a measurement system for evaluating the surface characteristics of optical thin films. This system has several advantages such as multi-function, accuracy and fast measurement.
中文摘要 i
Abstract ii
誌 謝 iii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 5
1.2.1 厚度檢測 5
1.2.2 平坦度檢測 8
1.2.3 相位還原演算法 9
1.2.4 應力檢測 10
1.3 研究方法 12
1.4 本文架構 12
第二章 基本原理 14
2.1 光學薄膜厚度檢測 16
2.1.1 等厚干涉條紋 16
2.1.2 細線化 17
2.2 表面平坦度檢測 19
2.2.1 小波轉換 19
2.2.2 灰階共生矩陣 24
2.2.3 熵值運算 27
2.3 三維表面重建與應力檢測 28
2.3.1 快速傅立葉轉換 28
2.3.2 膜數 判別 29
2.3.3 Macy相位展開 30
2.3.4 薄膜應力檢測 31
第三章 實驗架構 34
3.1 等傾干涉條紋架構 36
3.1.1 平坦度檢測架構 36
3.2 等厚干涉條紋架構 37
3.2.1 膜厚檢測架構 37
3.2.2 3D表面重建和應力檢測架構 39
第四章 程式設計 40
4.1 LabVIEW與Matlab程式簡介 40
4.2 光學薄膜表面特性量測系統 41
4.2.1 膜厚檢測程式 42
4.2.2 表面平坦度程式 43
4.2.3 3D表面重建程式 45
4.2.4 應力檢測程式 47
第五章 檢測結果與分析 49
5.1 表面平坦度檢測 49
5.2 薄膜厚度檢測 51
5.3 3D表面重建與薄膜應力檢測 52
第六章 結論 54
6.1 研究成果 55
6.2 未來展望 55
參考文獻 57
附錄 人眼虹膜影像辨識之研究 60
[1]Chen W.P.and Chen J.M., “Use of surface plasma wave for determination of the thickness and optical constant of thin metallic films,” J. Opt .Soc. Am., Vol. 71, pp.189-191, (1981).
[2]Levesque L., Paton B.E and Payne S.H, “Precise thickness and refractive index determination of polyimide films using attenuated total reflection,” Appl. Opt., Vol.33, pp.8036-8040, (1994).
[3]Rivory J., “Ellipsometric Measurements Thin Films for Optical System,” Chap.11, Marcel Dekker Inc, (1995).
[4]Manifacier J.C.,Gasiot J., “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phy. E:Sci. Inst , Vol.9, pp.1002-1004, (1976).
[5]何聰慧, “光學薄膜常數之計算, ” 中央大學碩士論文, (2002).
[6]H.M. Shabana, “Determination of film thickness and refractive index by interferometry,” Polymer Testing, Vol.23, pp.695-702, (2004).
[7]Canan Karaalioglu,Yani Skarlatos, “Measurement of thin film thickness by electronic speckle pattern interferometry,” Optics communications, Vol.234, pp.269-276, (2004).
[8]Helen L. Maynarda and Noah Hershkowitz, “Thin-film interferometry of patterned surfaces,” J. Vac. Sci. Technol. B, Vol. 13, No. 3, (1995).
[9]A. A. Hussain and J. S. S. Whiting, “A simple apparatus for film thickness measurements,” J. Phys. E: Sci. Instrum, Vol. 18, (1985).
[10]David J.Whitehouse, “Measurement and Effect of Surface & Defect & Quality of Polish,” Proc. SPIE, Vol. 525, p.106, (1985).
[11]J.M. Bennett, “Optical Surface Technology,” Proc. SPIE, Vol.381, p.190, (1983).
[12]Hariharan P., Oreb B.F. and Eijux T., “Digital Phase-shifting Interferometry: A Simple Error-compensating Phase Calculation Algorithm,” Applied Opt., Vol. 26, pp.2504-2508, (1987)
[13]Takeda Mitsuo, Ina Hideki and Kobayashi Seiji, “Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry,” Journal of Optical Society of America, Vol. 72, No. 1, (1982).
[14]Macy W.W., Jr, “Two-Dimensional Fringe-Pattern Analysis,” Applied Opt., Vol. 22, pp3898-3901, (1983).
[15]Ghiglia D.C., Mastin G.A. and Romero L.A., “Cellulr-automata Method for Phase Unwrapping,” Journal of Optical Society of America, Vol. 4, No. 1, pp267-280, (1987).
[16]Ghiglia D.C. and Romero L.A., “Minimum LP-norm two-dimensional phase unwrapping,” Journal of Optical Society of America, Vol. 13, No. 10, (1996).
[17]Clifton Tuttle and Randle Cartwright, “A method for the measurement of flatness of polished surfaces,” Journal of Optical Society of America, Vol. 30, No.8, pp.348-349, (1940).
[18]R. Bunnagel, H.A. Oehring, and K. Steiner, “Fizeau interferometer for measuring the flatness of optical surfaces,” Applied Optics, Vol.7, No.2, pp.331-336, (1968).
[19]G.G. Stoney, “The tension of metallic films deposited by electrolysis,” Porc. Roy. Soc., A82, pp.172-175, (1909).
[20]John Daugman, “How Iris Recognition Works,” IEEE Transactions on and system for video technology, Vol. 14, pp. 21-30, (2004).
[21]T.Y. Zhang and C.Y. Suen, “A fast parallel algorithm for thinning digital pictures”, Comm. ACM 27, 3, pp.236-239, (1984).
[22]T. Gharbi and D. Barchiesi, “Local signal processing to evaluate resolution in SNOM images, using 1D wavelets,” Opt. Comm., Vol. 77, pp. 85-93 (2000).
[23]S.G. Mallat, “A theory for multiresolution decomposition: the wavelet representation,” IEEE Trans, Pattern analysis and machine intelligence, Vol.11, pp. 674-693 (1989).
[24]A. Grossmann and J. Morlet, “Decomposition of hardy functions into square integrable wavelets of constant shape,” SIAM J. Math., Vol. 15, pp. 723-736 (1984).
[25]Ahmet Latif Amet, Aysin Ertuzun, Aytul Ercil,“Subband domain Co-Occurrence matrices for Texture Defect Detection”submitted to Image and Vision Computing. Journal,(1998).
[26]Ross F Walker, Paul Jackway, I.D. Longstaff, “Improving Co-Occurrence Matrix Feature Discrimination.” DICTA ''95, the 3rd Conference on Digital Image Computing: Techniques and Applications, 6-8th December, (1995).
[27]K Kim, S Jeong, B.T Chun, J.Y Lee, Y Bae, “Video image retrieval on the basis of subregional co-occurrence matrix texture features and normalized correlation.”, IEEE Trans, (1999).
[28]李正中,“薄膜光學與鍍膜技術”, 第四版, 藝軒圖書出版社, pp.403-428, (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top