跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李煥文
研究生(外文):Huan-Wan Li
論文名稱:應用於超寬頻之低雜訊互補金氧半壓控振盪器設計
論文名稱(外文):Design of Low Phase Noise CMOS Quadrature Voltage-Controlled Oscillator for UWB Applications
指導教授:劉堂傑
指導教授(外文):Don-Gey Liu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:87
中文關鍵詞:鎖相迴路壓控振盪器交錯耦合對相位雜訊
外文關鍵詞:Phase-locked loopVoltage-controlled oscillatorCross-coupled pairPhase noise
相關次數:
  • 被引用被引用:8
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究著重於鎖相迴路(Phase-Locked Loop)內之壓控振盪器(Voltage-Controlled Oscillator)之設計與研究,並探討造成振盪電路相位雜訊之成因及改善方法,本研究以低相位雜訊、低功耗及寬調頻範圍為目標。

本論文提出兩個可適用於多頻帶正交分頻多工聯盟(MBOA)頻帶規範之正交壓控振盪器VCO-I及VCO-II。

VCO-I採用互補式交錯耦合對架構,使用累增模式變容器及切換式調頻電容,振盪頻率可從5.187GHz~6.490GHz;相位雜訊在距離5.955GHz之載波100kHz處為-82.711dBc/Hz,在距離5.530GHz載波100kHz處為-82.873dBc/Hz;供應電壓為2.1V;振盪器核心功率消耗為12.94mW;輸出功率大於1dBm。

VCO-II採pMOS交錯耦合對的架構,振盪頻率可從5.21GHz~6.38GHz;相位雜訊在距離5.95GHz之載波100kHz處為-89.14dBc/Hz,在距離5.40GHz載波100kHz處為-88.09dBc/Hz;供應電壓為1V;振盪器核心功率消耗為9.42mW;輸出功率為-7dBm及1dBm。
This thesis will focus on the study and design of voltage-controlled oscillators, which are often integrated in phase-locked loops. Furthermore, the cause of phase noise and its improvement methods were also discussed. The goal of this thesis is to achieve low phase noise, low power consumption and wide tuning range.

Two voltage-controlled oscillator circuits with quadrature outputs named VCO-I and VCO-II which meet the band allocation proposed by MultiBand OFDM Alliance (MBOA) were proposed.

A CMOS cross-coupled pair was used to provide negative resistance in VCO-I, the oscillation frequency ranges from 5.187GHz to 6.490GHz by using accumulation mode varactors and switch tuning capacitor. The phase noise at 100kHz offset from 5.955GHz carrier is -82.711dBc/Hz and at 100kHz offset from 5.530GHz carrier is -82.873dBc/Hz. The supply voltage is 2.1V and the output power is greater than 1 dBm over the whole oscillation frequency range.

VCO-II uses pMOS cross-coupled pair topology, its oscillation frequency ranges from 5.21GHz to 6.38GHz. The phase noise at 100kHz offset from 5.95GHz carrier is -89.14dBc/Hz and at 100kHz offset from 5.40GHz carrier is -88.09dBc/Hz. The supply voltage is 1V and the output power is -7 and 1 dBm.
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 viii

第一章 緒論
1.1 研究背景 1
1.2 超寬頻通訊標準 2
1.3 研究動機 3
1.4 研究流程與論文架構 4

第二章 振盪器基本原理
2.1 振盪器之分析 6
2.2 振盪器之種類 11
2.3 LC振盪器架構 12

第三章 振盪器之效能評估
3.1 相位雜訊 18
3.2 相位雜訊之改善技術 27
3.3 調頻範圍 33
3.4 Pushing 35
3.5 Pulling 36

第四章 積體化電感之特性
4.1 簡介 38
4.2 積體化電感之等效模型 38
4.3 積體化電感之非理想特性 40
4.4 電感之品質因素 43
4.5 結論 46

第五章 壓控振盪器分析與設計
5.1 簡介 47
5.2 互補式交錯耦合正交壓控振盪器設計(VCO-I) 47
5.3 pMOS交錯耦合正交壓控振盪器設計(VCO-II) 60

第六章 結論與未來展望 73

參考文獻 74
[1]S.W. Yoon, E.C. Park, C.H. Lee, S. Sim, S.G. Lee, E. Yoon, J. Laskar and S. Hong, "Cross-Coupled Differential Oscillator MMICs With Low Phase-Noise Performance", IEEE Microwave and Wireless Component Letters, vol. 11, pp. 495-497, Dec. 2001.
[2]MultiBand OFDM Physical Layer Proposal for IEEE 802.15.3a, Sep. 2004.
[3]B. Razavi, RF Microelectronics, Prentice-Hall PTR, 1998.
[4]袁帝文, 王岳華, 謝孟翰, 王弘毅, 高頻通訊電路設計, 高立圖書, 2001.
[5]G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design 2nd ed., NJ: Prentice-Hall, 1997.
[6]M. Perrott, High Speed Communication Circuits and Systems, MITOPENCOURSEWARE, http://www.twocw.net/index.htm.
[7]D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum”, Proc. IEEE, vol. 54, pp.329-330, Feb. 1966.
[8]A. Hajimiri and T. H. Lee, "A General Theory of Phase Noise in Electrical Oscillators", IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
[9]T. Falk and W. Schwarz, "Impulse Sensitivity Functions of Oscillators", Proc. of IEEE International Symposium on Circuits and Systems, vol. 1, pp. 647-650, Geneva May 28-31 2000.
[10]J. Rogers and C. Plett, Radio Frequency Integrated Circuit Design, Norwood, MA: Artech House, 2003.
[11]N. Seshan, J. Rajagopalan and K. Mayaram, "Design of Low Power 2.4GHz CMOS LC Oscillators with Low Phase-Noise and Large Tuning Range", IEEE International Symposium on Circuits and Systems, vol. 4, pp. IV-409-IV-412, 26-29 May 2002.
[12]E. Hegazi, J. Rael, A. Abidi, The Designer’s Guide to High-Purity Oscillators, Boston: Kluwer Academic Publishers, 2005.
[13]E. Hegazi, H. Sjoland and A.A. Abidi, "A Filtering Technique to Lower LC Oscillator Phase Noise", IEEE J. Solid-State Circuits, vol. 36, pp. 1921-1930, Dec. 2001.
[14]N. Itoh, "A Study of Capacitor-Coupled Varactor VCO to Investigate Flicker Noise Up-Conversion Mechanism", Proc. on IEEE International Workshop on Radio-Frequency Integration Technology, pp. 157-160, Nov. 30-Dec. 02, 2005, Singapore.
[15]N. H. W. Fong, J. O. Plouchart, N. Zamdmer, D. Liu, L. F. Wagner, C. Plett, and N. G. Tarr, "A 1-V 3.8-5.7-GHz Wide-Band VCO With Differentially Tuned Accumulation MOS Varactors for Comon-Mode Noise Rejection in CMOS SOI Technology", IEEE Trans. on Microwave Theory and Techniques, vol. 51(8), pp. 1952-1959, Aug. 2003.
[16]A. Kral, F.Behbahani and A. A. Abidi, "RF-CMOS oscillators with Switched Tuning", Proc. of IEEE Custom Integrated Circuit Conference, pp. 555-558, 11-14 May 1998.
[17]S. M. Yim, and K. K. O, "Switched Resonators and Their Applications in a Dual-Band Monolithic CMOS LC-Tuned VCO", IEEE Trans. Microwave Theory and Techniques, vol. 54(1), pp. 74-81, Jan. 2006.
[18]S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, T. H. Lee, “Simple Accurate Expressions for Planar Spiral Inductances”, IEEE J. Solid-State Circuits, vol. 34(10), pp.1419-1424, Oct. 1999.
[19]蔣宗佑, “低功率低相位雜訊CMOS互補式LC諧振埠壓控振盪器之研究與分析”, 雲林科技大學電子工程研究所碩士論文, 民國94年七月。
[20]J. M. Lopez-Villegas, J. Samitier, C. Cane and P. Losantos, "Improvement of the Quality Factor of RF Integrated Inductors by Layout Optimization", IEEE Radio Frequency Integrated Circuits Symposium, pp. 169-172, 7-9 June 1998.
[21]Y. H. Kao and M. T. Hsu, "Theoretical Analysis of Low Phase Noise Design of CMOS VCO", IEEE Microwave and Wireless Components Letters, vol. 15, pp. 33-35, Jan. 2005.
[22]M. Danesh, J. R. Long, R. A. Hadaway and D. L. Harame, "A Q-factor enhancement technique for MMIC inductors", IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 183-186, 7-12 June 1998.
[23]J. Gil, S. S. Song, H. Lee and H. Shin, "A -119.2 dBc/Hz at 1 MHz, 1.5 mW, Fully Integrated, 2.5-GHz, CMOS VCO Using Helical Inductors", IEEE Microwave and Wireless Components Letters, vol. 13, pp. 457-459, Nov. 2003.
[24]R. Aparicio, A. Hajimiri, "A Noise-Shifting Differential Colpitts VCO", IEEE J. Solid-State Circuits, vol.37, pp. 1728-1736, Dec. 2002.
[25]S.W. Yoon, E.C. Park, C.H. Lee, S. Sim, S.G. Lee, E. Yoon, J. Laskar and S. Hong, "Cross-Coupled Differential Oscillator MMICs With Low Phase-Noise Performance", IEEE Microwave and Wireless Component Letters, vol. 11, pp. 495-497, Dec. 2001.
[26]S.L.J. Gierkink, S. Levantino, R.C. Frye, C. Samori and V. Boccuzzi, "A Low-Phase-Noise 5-GHz CMOS Quadrature VCO Using Superharmonic Coupling", IEEE J. Solid-State Circuits, vol. 38, July 2003, pp. 1148-1154.
[27]G. D. Astis, D. Cordeau, J. M. Paillot, L. Dascalescu, "A 5-GHz Fully Integrated PMOS Low-Phase-Noise LC VCO", IEEE J. Solid-State Circuits, vol. 40(10), pp. 2087-2091, Oct. 2005.
[28]M. D. Tsai, Y. H. Cho, H. Wang, "A 5-GHz low phase noise differential colpitts CMOS VCO", IEEE Microwave and Wireless Components Letters, vol. 15(5), pp. 327-329, May 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top