跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建羽
研究生(外文):Jian-Yu Chen
論文名稱:以田口實驗方式進行IC封裝元件翹曲之數值模擬
論文名稱(外文):A Numerical Study of the Warpage in IC Packaging by Taguchi Method
指導教授:黃聖杰黃聖杰引用關係劉明山劉明山引用關係
指導教授(外文):Sheng-Jye HwangMin-Shan Liu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械工程學所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:88
中文關鍵詞:熱固性材料固化反應殘留應力P-V-T-C關係式翹曲電子構裝
外文關鍵詞:IC packageresidual stresscuring reactionthermosetting materialP-V-T-C relationwarpage
相關次數:
  • 被引用被引用:18
  • 點閱點閱:1080
  • 評分評分:
  • 下載下載:309
  • 收藏至我的研究室書目清單書目收藏:2
在電子構裝的製程中,經常遇見的問題不外乎有金線偏移(wire sweep)、導線架偏移(paddle shift)和構裝體翹曲(warpage)等等,在過去的文獻研究中,對於金線偏移和導線架偏移的研究報告非常的多,但對於構裝體翹曲的研究探討則為少數。

隨著半導體元件趨向輕薄短小的設計,翹曲與殘留應力的問題也日益受到重視。以往對於翹曲變形或殘留應力的估算係根據材料熱膨脹係數(CTE)的不同進行估算,而忽略了環氧樹脂(EMC)固化時所造成的體積變化;而近年來發現僅依據CTE所做的電腦模擬分析,容易低估產品翹曲量與殘留應力值,故在進行電腦模擬運算構裝體翹曲量大小時必須同時考慮溫度效應與環氧樹脂固化反應,才能準確預估產品的翹曲量大小。

環氧樹脂屬於熱固性材料(thermosetting material),加熱時會因為分子鍊結而產生固化反應(cure reaction),而用來描述其行為的關係式即為P-V-T-C關係式,這代表環氧樹脂行為和壓力(pressure)、體積(volume)、溫度(temperature)、熟化度(degree of cure)有關。除此之外,製程參數如模溫、保壓壓力、固化時間…等亦會對翹曲量與殘留應力大小有所影響。

最近,利用電腦進行模擬預測封裝體翹曲量與殘留應力大小的研究開發已有些許成果,但其研究之封裝體外型較為簡單,故在本文中將以較為複雜的產品設計作為藍圖,並做實際成品的驗證。由分析結果發現,當模溫越高、保壓壓力越大與固化時間越長皆會使得成品翹曲量越大,這與實際成品比對不謀而合,因此藉由電腦模擬精準預測封裝製程所產生的翹曲量與殘留應力大小之技術在本篇論文可得到驗證。

關鍵詞:電子構裝、翹曲、殘留應力、固化反應、熱固性材料、P-V-T-C關係式
In the process of IC packaging, there are some problems about wire sweep、paddle shift and warpage…,etc. In the recorders, there are many research-reports about wire sweep and paddle shift while there are few in warpage about IC package.

As the type of IC package is toward lighter, thinner and smaller, the problems about warpage and residual stress is more important. Previous research works have focused on the stresses or warpage analyses with temperature changes between constituent materials and neglect the cure shrinkage effects. However, more and more studies indicate that the estimation of residual stresses or warpage according to CTE only was not accurate enough to predict IC packaging behavior. So it would need to consider the heat effects and cure reaction in the same time for predicting the accurate warpage of IC packages by simulation in computer.

The EMC is a thermosetting material. The properties of EMC must describe by pressure、volume、temperature and degree of cure. The relation is called P-V-T-C equation. In addition, the warpage will be influenced by mold temperature、process pressure、curing time…,etc.

There are some results about predicting the warpage of IC package by simulation in computer recently, but the package outline is simple. So in this study, it were considered more complicated package outline. In the results of this study, the warpage will increase by higher mold temperature、higher process pressure and longer curing time which is the same with actual products.

Keywords:IC package、warpage、residual stress、curing reaction、thermosetting material、P-V-T-C relation.
中文摘要.....................................................................................................I
Abstract......................................................................................................II
目錄..........................................................................................................III
表目錄......................................................................................................VI
圖目錄.....................................................................................................VII
符號說明...................................................................................................X
第一章 緒論............................................................................................1
1-1 前言..........................................................................................1
1-2 IC封裝製程簡介.....................................................................2
1-3 翹曲與殘留應力現象..............................................................4
1-3-1 收縮與翹曲......................................................................5
1-3-2 殘留應力..........................................................................7
1-4 研究動機.................................................................................10
1-5 文獻回顧.................................................................................12
1-5-1 轉移成型法......................................................................12
1-5-2 固化反應分析..................................................................12
1-5-3 翹曲與殘留應力分析......................................................13
1-6 本文架構.................................................................................15

第二章 理論分析..................................................................................17
2-1 模流充填理論.........................................................................17
2-2 固化反應動力理論.................................................................20
2-3 P-V-T-C關係式的建立...........................................................22
2-4 應力應變統御方程式.............................................................25
2-4-1 固化收縮數學模型..........................................................25
2-4-2 應力應變之數學統御方程式..........................................26
第三章 數值模擬分析與田口實驗最佳化..........................................31
3-1 模流分析.................................................................................32
3-1-1 模流分析前處理..............................................................32
3-1-2 田口實驗與製程參數設定..............................................40
3-1-3 模流分析充填結果..........................................................43
3-2 應力應變分析.........................................................................46
3-2-1 建構分析網格與邊界條件、拘束條件的設定..............47
3-2-2 應力應變分析結果..........................................................48
3-3 田口預測與實際分析之比較.................................................54
第四章 LQFP-64實際成品成型驗證..................................................55
4-1 模流分析.................................................................................55
4-2 模流分析結果.........................................................................56
4-3 翹曲與殘留應力分析結果.....................................................62
第五章 結論與未來展望......................................................................68
5-1 結論.........................................................................................68
5-2 未來展望.................................................................................69
參考文獻..................................................................................................71
自述..........................................................................................................76
【1】P. So and L. J. Broutman, “Residual Stresses in Polymers and Their Effect on Mechanical Behavior,” Polymer Engineering and Science, vol. 16, pp. 785~791, 1976.
【2】A. I. Isayev, “Injection and Compression Molding Fundamentals,” Marcel Dekker, Inc. New York and Basel, pp. 246~257, 1987.
【3】“C-Mold Design Guide — A Resource for Plastics Engineers,” AC Technology, New York, U.S.A., pp. 85~89, 1994.
【4】A. I. Isayev, “Orientation Development in the Injection Molding of Amorphous Polymers,” Polymer Engineering and Science, vol. 23, pp. 271~284, 1983.
【5】B. H. Kim and R. R. Wadhwa, “A New Approach to Low Thermal Inertia Molding,” Polymer Plastics Technology Engineer, vol. 26, pp. 1~22, 1987.
【6】G. Kelly, C. Lyden, W. Lawton and J. barrett, “Accurate Prediction of PQFP Warpage,” Electronic Components and Technology Conference, pp. 102-105, 1994.
【7】G. Kelly, C. Lyden, W. Lawton, J. barrett, A. Saboui, H. Page and J. B. Peters, “Importance of Molding Compound Chemical Shrinkage in the Stress an Warpage Analysis of PQFP’s,” IEEE Transactions on Components and Packaging Technologies, vol. 19, pp. 296-300, 1996.
【8】Schlesier, K. M., R. C. A., Review, 43, 590, 1982.
【9】U. F. Gonzalez, Shen and C. Cohen, “Rheological Characteristic of Fast-Reaction Thermosets through Spiral Flow Experiments,” Polymer Engineering and Science, vol. 32, pp. 172~184, 1992.
【10】L. S. Turng and V. W. Wang, “On the Simulation of Microelectronic Encapsulation with Epoxy Molding Compound,” Journal of Reinforced Plastic and Composites, vol. 12, pp. 506~519, 1993.
【11】L. T. Nguyen, “Reactive Flow Simulation in Transfer Molding of IC Packages,” 43rd Electronic Components Conference, pp. 375~390, 1993.
【12】Chang, R.-Y., Yang, W.-H., Hwang, S.-J., and Su. F, “Three-Dimensional Modeling of Mold Filling in Microelectronics Encapsulation Process,” IEEE Transactions on Components and Packaging Technologies, vol. 27, pp. 200~209, 2004.
【13】A. C. Loos and G. S. Springer, “Curing of the Epoxy Matrix Composites,” Journal of Composite Materials, pp. 135~169, 1983.
【14】G. S. Springer, “Resin Flow During the Curing of Fiber Reinforced Composites,” Journal of Composite Materials, vol.16, pp. 400~410, 1982.
【15】張益三, “電子構裝材料固化反應與應力體積及溫度關係模式之研究”, 碩士論文, 國立成功大學, (1997).
【16】Y. S. Chang, S. J. Hwang, H. H. Lee, and D. Y. Hwang, “Study of P-V-T-C Relation of EMC,” ASME Journal of Electronic Packaging, vol. 124, pp. 371~373, 2002.
【17】Y. S. Chang and S. J. Hwang, “P-V-T-C Equation for Epoxy Molding Compound,” IEEE Transactions on Components and Packaging Technologies, (2004).
【18】張益三, “電子構裝材料等溫等壓體積收縮行為之研究”, 博士論文, 國立成功學, (2004).
【19】S. Timoshenko, “Analysis of Bi-Material Thermostats,” Journal of Optimum Soc. Am, vol. 11, pp. 233~255, 1925.
【20】D. R. Olsen, H. M. Berg, “Properties of Die Bond Alloys Relating to Thermal Fatigue,” IEEE Components, Hybrids and Manufacturing Technology, vol. 12, pp. 257~263, 1979.
【21】T. Y. Pan and Y. H. Pao, “Deformation in Multilayer Stacked Assemblies,” ASME Journal of Electronic Packaging, vol. 112, pp. 30~34, 1990.
【22】P. M. Hall, “Thermal Expansivity and Thermal Stress in Multilayered Structures,” Thermal Stresses and Strain in Microelectronics Packaging, edited by J.H. Lau, Van Nostrand Reinhold, pp. 79~94, 1993.
【23】Roark and Young, “Formulas for Stress and Strain”, 5th Edition, McGraw-Hill Book Co., New York, 1975.
【24】E. Suhir, “Predicted Residual Bow of Thin Plastic Packages of Integrated Circuit Devices”, Journal of Electronic Packaging, Vol.114, pp.467~470, (1992).
【25】E. Suhir and L. T. Manzione, “Predicted Bow of Plastic Packages Due to the Nonuniform Through-Thickness Distribution of Temperature”, Journal of Electronic Packaging, Vol.114, pp.329~335, (1992).
【26】T. S. Yeung and M. F. Yuen, “Warpage of Plastic IC Packages as a Function of Processing Conditions,” ASME Journal of Electronic Packaging, vol. 123, pp. 268-272, 2001.
【27】M. ST. Jacques, “An Analysis of Thermal Warpage in Injection Molded Flat Parts Due to Unbalanced Cooling,” Polymer Engineering Science, vol. 22, pp. 241~247, 1982.
【28】L. Yip and A. Hamzehdoost, “Package Warpage Evaluation for High Performance PQFP,” IEEE Electronic Components and Technology Conference, pp. 229-233, 1995.
【29】S. Okikawa, M. Sakimoto, M. Tanaka, T. Sato, T. Toya and Y. Hara,”Stress Analysis of Passivation Film Crack for Plastic Molded LSI Caused by Thermal Stresses,” International Symposium Testing and Failure Analysis, pp. 275~280, 1983.
【30】A. Nishimura, “Life Estimation for IC Plastic Packages under Temperature Cycling Based on Fracture Mechanics,” IEEE Components, Hybrids and Manufacturing Technology, vol. 12, pp. 637~642, 1987.
【31】K. K. Tamma, B. L. Dowler and S. B. Railkar, “Computer Aided Application to Injection Molding: Transfinite / Finite Element Thermal Stress Response Formulations,” Polymer Engineering and Science, vol. 28, pp. 421~428, 1988.
【32】Li Sen Chen and Bor Chwen Cheng, “Warpage of Thin Plastic Packages,” The First Asia-Pacific Conference on Materials and Processes in IC Encapsulation, March 18-19, Hsinchu Taiwan, pp. 3-0~3-22, 1996.
【33】T. Matsouka, J. I. Takabatake, A. Koiwai, Y. Inoue, S. Yamamoto and H. Takahashi, “Integrated Simulation to Predict Warpage of Injection Molded Parts,” Polymer Engineering and Science, vol. 31, pp. 1043~1050, 1991.
【34】S. F. Walsh, “Shrinkage and Warpage Prediction for Injection Molded Components,” Journal of Reinforced Plastics and Composites, vol. 12, pp. 769~777, 1993.
【35】K. Oota and K. Shigeno, “Development of Molding Compound for BGA,” 45th Electronic Components Conference, pp. 78~85, 1995.
【36】K. Oota and M. Saka, “Cure shrinkage Analysis of Epoxy Molding Compound,” Polymer Engineer and Science, vol. 41, pp. 1373-1379, 2001.
【37】L. C. Hong and S. J. Hwang, “Study of Warpage Due to P-V-T-C Relation of EMC in IC Packaging,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, No.2,pp. 291~295, 2004.
【38】K. S. Kim and H. T. Hahn, “Residual Stress Development During Processing of Graphic/Epoxy Composites,” Composites Science and Technology, vol. 36, pp. 121~132, 1989.
【39】B. H. Lee and B. H. Kim, “Optimization of Part Wall Thicknesses to Reduce Warpage”, Polymer-Plastics Technology and Engineering, Vol.34, No.5, pp.793~811, 1995.
【40】Xinyu Dou, “Instability Analysis for Ultra Thin Quad Flat Pack,” ASME Advanced in Electronic Package, vol. 1, pp. 1033~1039, 1997.
【41】Matsuki Yamamoto and Yoshihiro Matsumura, “Flow Analysis of IC Encapsulation Resin in the Molding Process,” ASME Advanced in Electronic Package, vol. 1, pp. 269~275, 1997.
【42】Y. Miyano, M. Shimbo and T. Kunio, “Residual Stresses and Warp Generated by One-side Quench of an Epoxy-resin Beam,” Experimental Mechanics, vol. 24, pp. 75~80, 1984.
【43】S. J. Liu, “Modeling and Simulation of Thermally Induced Warpage in Injection Molded Thermoplastics”, Ph. D. Thesis, University of Wisconsin-Madison, 1992.
【44】T. S. Yeung and M. M. F. Yuen, “Viscoelastic Analysis of Package Warpage”, Sensing Modeling and Simulation in Emerging Electronic Packaging ASME, Vol.17, pp.101~107, 1996.
【45】T. S. Yeung and M. M. F. Yuen, “Warpage of IC Packages,” The First Asia-Pacific Conference on Materials and Processes in IC Encapsulation, pp. 4-1~4-10, 1996.
【46】J. H. Park, J. K. Kim, M. M. F. Yuen, S. W. R. Lee, P. Tong and P. C. H. Chan, “Thermal Stress Analysis of a PQFP Molding Processes: Comparison of Viscoelastic and Elastic Models,” Key Engineering Materials, vol. 145, pp. 1127~1132, 1998.
【47】J. Wang, Z. Qian and S. Liu, “Process Induced Stresses of a Flip-Chip Packaging by Sequential Processing Molding Technique,” ASME Journal of Electronic Packaging, vol. 120, pp. 309~313, 1998.
【48】W. C. Bushko and V. K. Stokes, “The Effects of Differential Mold-Surface Temperatures on the Warpage of Packed Injection-Molded Parts,” ANTEC, pp. 506~512, 1994.
【49】O. Denizart, M. Vincent and J. F. Agassant, “Thermal Stresses and Strains in Injection Moulding : Experiments and Computations”, Journal of Materials Science, Vol.30, pp.552~560, 1995.
【50】Moroni, A., J. Mijovic, E. M. Pearce and C. C. Foun, “Cure Kinetics of Epoxy Resins and Aromatic Diamines”, J. Appl. Polym. Sci., Vol.32, pp3761~3773, (1986).
【51】洪立群, “IC封裝元件翹曲分析之研究”, 博士論文, 國立成功大學, (2004).
【52】Saeed Moaveni, “Finite Element Analysis Theory and Application with ANSYS”, Prentice Hall Inc, Upper Saddle River, New Jersey, (1999).
【53】李輝煌, “田口方法-品質設計的原理與實務”, 高立圖書, (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊