跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳建龍
研究生(外文):Jian-long Wu
論文名稱:小波函數之消散動差
論文名稱(外文):Vanishing Moments of Wavelet Functions
指導教授:張桂芳張桂芳引用關係
指導教授(外文):Kuei-fang Chang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:應用數學所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:42
中文關鍵詞:多層解析空間小波函數消散動差基底
外文關鍵詞:fundamentalitydual basisvanishing momentsorthonormal basisRiesz bsisFramesmultiresolution analysis(MRA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文裡,我們首先介紹一些有關基底、正交基底、frame和多層解析空間(MRA)的基本架構。接著,如果自格函數構成一個多層解析空間的話,那我們可以去證明在某些條件之下自格函數的積分不會等於零。最後,在小波分析裡,我們對於小波函數有消散動差,給一些充分條件。
In this thesis, firstly, we introduce several fundamental notions about orthonormal bases, Riesz bases and frames. Subsequently, if a scaling function generates a multiresolution analysis(MRA), under some conditions we can prove that the integral of the scaling function is nonzero. Finally, in wavelet analysis, we give some necessary conditions that a wavelet function has vanishing moments.
1.Introduction...........................................2

2.Fundamental Notions for Bases and Frames...............4

3.Multiresolution Analysis...............................16

4.Fundamentality in L2(R)................................22

5.Vanishing Moments......................................26

6.Future Work............................................35

7.Reference..............................................36
[1] Mark A. Pinsky, Introduction to Fourier analysis and Wavelets, Brooks Cole publishing company, 2002.
[2] Albert Boggess and Francis J. Narcowich, Afirst Course in Wavelets with Fourier Analysis, Prentice Hall, In. NJ, 2001.
[3] Gerald B. Folland, Fourier Analysis And Its Applications, Wadsworth and Brooks Cole Math. series, Califirnia, 1992.
[4] Kuei-Fang Chang, Notes on Multivariate Decomposition, Taiwanese Journal Of Mathematics, Vol.2, NO1, pp.69-85, March 1998.
[5] K.F. Chang, S.J. Shih, C.M. Chang, Regularity and Vanishing Moments of Multiwavelets, Dept. of Applied Mathematics, Feng Chia University, ROC, December 17, 2003.
[6] Kuei-Fang Chang, Wavelet Analysis On Hilbret Spaces, The University of Texas at Austin, May 1993.
[7] M. papndakis, Generated frame multiresoluyion analysis of abstract Hilbert spaces I, technical report, University of Houston, 2000.
[8] Ole Chistensen, Torben K. Jensen, An introduction to the theory of bases, frames, and wavelets, Technical University of Denmark, August 25, 2002.
[9] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelet:MRA-based constructions of wavelet frames, Appl. Compute. Harmon. Anal.
[10] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Reg. Conf. Series in Appl. Math. 61, Soc. Ind. Appl. Math., Philadelphia, 1992.
[11] Chiou-yueh Gun, A Note on Approximations for Lebesque Spaces, General Education Center, Nan-Kai College, ROC, February 26, 2005.
[12] Eugenio Hernandez, Guido Weiss, A First Course on wavelets, CRC Press, New York, 1996.
[13] W. Hardle, G. Kerkyacharian, D. Picard, A. Tsybakov, Wavelet, Approximation, and Statistical Applications, Springer, new york, 1998.
[14] Willard Miller, Introduction to the Mathematics of Wavelets, Lecture Notes and Backgroud Naterials for Math 5467, 2004.
[15] R. Duffin, A. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc., 72:341-366, 1952.
[16] R. L. Wheeden, A. Zygmund, measure and Integral, Marcel Dekker, Inc., New York, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top