工研院能環所,2001,台灣地區生質柴油應用評估報告,美國黃 豆協會。
工研院能環所,2005,生質燃料技術開發與推廣計畫計畫書,經濟部能源局。
中央氣象局,2006,http://www.cwb.gov.tw/V5/index.htm。
台灣地區水庫浮游藻類,行政院環境保護署,http://www.epa.gov.tw/student/algae/data/about.html
台灣水產試驗所東港分所,1999,餌料生物之培養與利用。
行政院環境保護署,2005,93年台灣地區環境水質監測年報-水庫水質篇。
吳俊哲、胡苔莉、喻家駿、童翔新、吳志超與郭鍾秀,1999,八十八年度台灣地區主要水庫水質監測計畫,EPA-88-G103-03-404,行政院環保署,台北。
吳俊哲、胡苔莉、吳志超與郭鍾秀,2000,八十九年度台灣地區主要水庫水質監測計畫,EPA-89-G103-03-1329,行政院環保署,台北。
吳俊哲、胡苔莉、吳志超與郭鍾秀,2001,九十年度台灣地區主要水庫水質監測計畫,EPA-89-Z102-02-106-90A047,行政院環保署,台北。
吳俊哲、胡苔莉、吳志超與郭鍾秀,2003,九十一年度日月潭水庫水質監測系統設置及研究計畫,南投縣環保局,南投。
吳耿東與李宏台,2004,生質能源-化腐朽為能源,科學發展月刊,第383期,20-27。
林良平,1991,小球藻之混營生長及微藻在生態生產上所扮演的角色,中華生質能源學會會誌,第十卷第三、四期,89-98。
林榮芳與黃檀溪,2002,比較耐熱性小球藻異營生長之特性,師大學報數理與科技類,47(1),31-40。
林俊義,2005,「推動國內生質燃料與能源作物論壇」論文集,83-101。
郁仁貽譯,1983,最新油脂工業大全, 徐氏基金會,台北。
徐敬衡、胡長良與劉文佐,2002,探討氧氣供給對Kineosphaera limosa生產PHB之關係,第七屆生化工程研討會論文集,449-453。
許正隆,2000,綠藻NC64A之培養及其透明質酸之生產,清華大學化學工程系碩士論文。郭鍾秀、張柏成與林珮君,1990,北港溪水質評估及藻類指標之研究,中華民國環境工程學會第十五屆廢水處理技術研討會論文集。
郭鍾秀與田志仁,1999,以生物指標(附著性矽藻)評估烏溪水質,第六屆海峽兩岸環境保護研討會論文集,高雄。
梁正中、胡苔莉、吳俊哲與郭鍾秀,2005,九十三年度台中港區環境調查監測分析報告書,台中港務局。
喻家駿與郭鍾秀,1993,北港溪水質生物指標及水質維護之研究(第三年),國科會專題研究計畫成果報告。
劉清標,2000,海洋微藻Isochrysis sp. CCMP 1324 超微細結構與不飽和脂肪酸之生成,國立臺灣大學農業化學研究所博士論文。德基水庫藻類生態監測,經濟部水利署,http://hysearch.wra.gov.tw/wra_ext/tech/DD/DD-04.htm.
翡翠水庫藻類資料庫,中央研究院植物研究所,http://wwwsinica.edu.tw/-dbalage.
Aaronson, S., 1973, Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica, J. Phycol., 9, 111-113.
Acikgoz, C., Onay, O. & Kockar, O. M., 2004, Fast pyolysis of linseed: product yields and compositions, J. Analy. Appl. Pyolysis, 71(2), 417-429.
Albitskaya, O. N., Zaitseva, G. N., Pakhomova, M. V., Goronkova, O. I., Silakova, G. S. & Ermokhina, T. M., 1974, Physiological and biochemical peculiarities of a culture of Spirulina platensis, Mikrobiol., 43, 649-653.
Ates, F., Pütün, E. & Pütün, A. E., 2004, Fast pyolysis of sesame stalk: yields and structural analysis of bio-oil, J. Analy. Appl. Pyolysis, 71(2), 779-790
Becker, E. W., 1984, Biotechnology and exploitation of the green alga Scenedesmus obliquus in India, Biomass, 4, 1-19.
Becker, E. W. & Venkataraman, L. V., 1984, Production and utilization of the blue-green alga Spirulina in India, Biomass, 4, 105-125.
Becker, E. W., 1994, Large-scale cultivation in Microalgae: biotechnology and microbiology, Cambridge University Press, New York.
Borowitzka, M. A., 1988a, Fats, oils and hydrocarbons in Microalgal biotechnology, Edited by Borowitzka, M. A. & Borowitzka, L. J., Cambridge University Press, New York.
Borowitzka, M. A., 1988b, Algal growth media and sources of algal cultures in Microalgal biotechnology, Edited by Borowitzka, M. A. & Borowitzka, L. J., Cambridge University Press, New York.
Cooksey, K. E., Guckert, J. B., Williams, S. A. & Callib, P. R., 1987, Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red, Microbiol. Methods, 6, 333-345.
Czernik, S., Scahill, J. & Diebold, J., 1995, The production of liquid fuel by fast pyrolysis of biomass, J. Solar Energy Eng., 117(1), 2-6.
Daryl, R. & Peterson, C., 1997, Toxicity studies with biodiesel. In Proceedings of the Conference on Commercialization of Biodiesel: Environmental and Health Benefits, University of Idaho, Moscow, Idaho.
Feng, F.-Y., Yang, W., Jiang, G.-Z., Xu, Y.-N. & Kuang, T.-Y., 2005, Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium, Process Biochem., 40(3-4), 1315-1318.
Hall, D. O., 1997, Biomass energy in industrialized countries-A view of the future, Forest Ecol. Mgmt., 91, 17-45.
Hu, Q., Guterman, H. & Richmond, A., 1996, A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs, Biotechnol. Bioeng., 51, 51-60.
Illman, A. M., Scragg, A. H. & Shales, S. W., 2000, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzy. Microbial Technol., 27, 631-635.
Ip, P.-F., Wong, K.-H. & Chen, F., 2004, Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture, Process Biochem., 39(11), 1761-1766.
Ip, P.-F. & Chen, F., 2005, Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark, Process Biochem., 40(2), 733-738.
Kaplan, D., Heimer, Y. M., Abeliovich, A. & Goldsbrough, P. B., 1995, Cadmium toxicity and resistance in Chlorella sp., Plant Sci., 109(2), 129-137.
Kosaric, N. & Velikonja, J., 1995, Liquid & gaseous fuels from biotechnology: challenge and opportunities, FEMS Microbiol. Rev. 16,111-142.
Kozlowska-Szerenos, B., Zielinski, P. & Maleszewski, S., 2000, Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply, Plant Physiol. Biochem., 38(9), 727-734.
Lau, P. S., Tam, N. F. Y. & Wong, Y. S., 1995, Effect of algal density on nutrient removal from primary settled wastewater, Environ. Pollut., 89(1-2), 59-66.
Loseva, N. L., Alyabyev, A.J., Rackimova, G. G. & Estrina, R. I., 1995, Aspects of the energetic balance of plant cells under different salt conditions, Thermochim. Acta., 251, 357-362.
Maeda, K., Owada, M., Kimura, N., Omata, K. & Karube, I., 1995, CO2 fixation from the flue gas on coal-fired thermal power plant by microalga, Energy Convers. Mgmt., 36(6-9), 717-720.
McEvoy, E., Wright, P. C. & Bustard, M. T., 2004, The effect of high concentration isopropanol on the growth of a solvent-tolerant strain of Chlorella vulgaris, Enzyme Microb. Technol., 35(2-3), 140-146.
Miao, X. L. & Wu, Q. Y., 2004, High yield bio-oil production from fast pyolysis by metabolic controlling of Chlorella protothecoides, J. Biotech., 110, 85-93.
Miao, X. L., Wu, Q. Y. & Yang, C. Y., 2004, Fast pyolysis of microalgae to produce renewable fuels, J. Anal. Appl. Pyolysis, 71, 855-863.
Minowa, T., Yokoyama, S.-Y., Kishimoto, M. & Okakurat, T., 1995, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel, 74(12), 1735-1738.
Minowa, T. & Sawayama, S., 1999, A novel microalgal system for energy production with nitrogen cycling, Fuel, 78, 1213-1215.
Ogbonna, J. C., Masui, H. & Tanaka, H., 1998, Sequential heterotrophic/autotrophic cultivation - An efficient method of producing Chlorella biomass for health food and animal feed, Oceanographic Literature Review, 45(8), 1439.
Oh-Hama, T. & Miyachi, S., 1988, Chlorella in Microalgal biotechnology, Edited by Borowitzka, M. A. & Borowitzka, L. J., Cambridge University Press, New York.
Onay, Ö.; Beis, S.H. & Koçkar, Ö. M., 2001, Fast pyolysis of rape seed in a well-swept fixed-bed reactor, J. Analy. Appl. Pyolysis, 58-59, 995-1007.
Onay, Ö. & Koçkar, Ö. M., 2004, Fixed-bed pyolysis of rapeseed (Brassica napus L.), Biomass and Bioenergy, 26(3), 289-299.
Orcutt, D. M. & Patterson, G. W., 1975, Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media, Comp. Biochem. Physiol., 50B, 579-583.
Pedroni, P., Davison, J., Beckert, H., Bergman, P. & Benemann, J., 2001, A proposal to establish an International Network on biofixation of CO2 and greenhouse gas abatement with microalgae, J. Energy & Environ. Res., 1(1) 136-150.
Rai, L. C., Rai, P. K. & Mallick, N., 1996, Regulation of heavy metal toxicity in acid-tolerant Chlorella: Physiological and biochemical approaches, Environ. Exp. bot., 36(1), 99-109
Rai, L.C., Husaini, Y. & Mallick, N., 1998, pH-altered interaction of aluminium and fluoride on nutrient uptake, photosynthesis and other variables of Chlorella vulgaris, Aquat. Toxicol., 42(1), 67-84
Ratledge, C., 1989, Biotechnology of oil and fats, In Microbial Lipids, Vol. 2, Edited by Ratledge, C. & Wilkinson, S. G., Academic Press, London.
Ratledge, C., 1993, Single cell oils--have they a biotechnological future? Trends Biotechnol., 11(7) 278-284.
Renaud, S. M., Thinh, L. V., Lambrinidis, G. & Parry, D. L., 2002, Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures, Aquaculture, 211, 195-214.
Sarma, S. S. S., Nandini, S. & Flores, J. L. G., 2001, Effect of methyl parathion on the population growth of the rotifer Brachionus patulus (O. F. Müller) under different algal food (Chlorella vulgaris) densities, Ecotoxicol. Environ. Saf., 48(2), 190-195.
Sato, T., Usui, S., Tsuchiya, Y. & Kondo, Y., 2006, Invention of outdoor closed type photobioreactor for microalgae, Energy Conver. Mgmt, 47, 791–799.
Sawayama, S., Inoue, S., Dote, Y. & Yokoyama, S-Y, 1995, CO2 fixation and oil production through microalga, Energy Convers. Mgmt. 36(6-9), 729-731.
Sawayama, S., Minowa, T. & Yokoyama, S-Y., 1999, Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae, Biomass Bioenergy, 17, 33-39.
Scragg, A. H., Illman, A. M., Carden, A. & Shales, S. W., 2002, Growth of microalgae with increased calorific values in a tubular bioreactor, Biomass Bioenergy, 23, 67-73.
Scragg, A. H., Spiller, L. & Morrison, J., 2003a, The effect of 2,4-dichlorophenol on the microalga Chlorella VT-1, Enzy. Microbiol. Technol., 32(5), 616-622.
Scragg, A. H., Morrison, J. & Shales, S. W., 2003b, The use of a fuel containing Chlorella vulgaris in a diesel engine, Enzy. Microbiol. Technol., 33(7), 884-889.
Seto, A., Wang, H. L. & Hesseltine, C. W., 1984 Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Ame. Oil Chem. Soc., 61, 892-894.
Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P., 1998, A look back at the U.S. Department of Energy’s aquatic species program-biofuel from algae, National Renewable Energy Laboratory, DOE, Colorado.
Shi, X.-M., Zhang, X.-W. & Chen, F., 2000, Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources, Enzyme Microb. Technol., 27(3-5), 312-318.
Takeda, T., Yoshimura, K., Ishikawa, T. & Shigeoka, S., 1998, Purification and characterization of ascorbate peroxidase in Chlorella vulgaris, Biochimie, 80(4), 295-301.
Tam, N. F. Y. & Wong, Y. S., 1996, Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media, Bioresource Technol., 57(1), 45-50.
Tapie, P. & Bernard, A., 1987, Microalgae production: Technical and economic evaluations, Biotechnol. Bioeng., 32, 873-885.
Tortora, G. J., Funke, B. R. & Case, C. L., 2005, Microbiology: An Introduction, Pearson Benjamin Cummings, California, Brief edition, 349.
Tsang, C. K., Lau, P. S., Tam, N. F. Y. & Wong, Y.S., 1999, Biodegradation capacity of tributyltin by two Chlorella species, Environ. Pollut., 105(3), 289-297.
Watanabe, A., 1960, List of algal strains in the collection at the institute of applied microbiology, J. Gen. Appl. Microbiol., 6, 283-292.
Watanabe, Y. & Saiki, H., 1997, Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas, Energy Convers. Mgmt., 38, 499-503.
Weete, J. D., Kim, H., Gandhi, S. R., Y. & Dute, R., 1997, Lipids and ultrastructure of Thraustochytrium sp. ATCC 26185, Lipids, 32(8), 839-845.
Wyman, C. E. & Goodman, B. J., 1993, Biotechnology for production of fuels, chemicals, and materials from biomass, Appl. Biochem. Biotech., 39/40, 41-59.
Yanagi, M., Watnabe, Y. & Saiki, H., 1995, CO2 fixation by Chlorella sp. HA-1 and its utilization, Energy Convers. Mgmt., 36(6-9), 713-716.
Zhu, C. J., Lee, Y. K. & Chao, T. M., 1997, Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1, J. Appl. Phycol., 9, 451-457.