跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳佩芬
研究生(外文):Pei-Fen Wu
論文名稱:利用本土淡水藻類產製生質柴油之可行性評估
論文名稱(外文):The feasibility of biodiesel production from native algae in Taiwan
指導教授:胡苔莉胡苔莉引用關係
指導教授(外文):Tai-Lee Hu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:88
中文關鍵詞:生質柴油生質能油脂微藻
外文關鍵詞:biomass energyoil-rich microalgaebiodiesel
相關次數:
  • 被引用被引用:38
  • 點閱點閱:1437
  • 評分評分:
  • 下載下載:371
  • 收藏至我的研究室書目清單書目收藏:5
由於化石能源日益枯竭,溫室效應造成的地球暖化日益嚴重,因此再生能源越來越受到各國的重視,如何有效的開發再生能源,以替代化石能源追求地球的永續發展,是世界各國努力的目標。
生質能由生質物轉換而成,是再生能源的一環。在各種生質物中,藻類具有生長快速及CO2零排放之優點,經大規模養殖後,乾燥的藻細胞其油脂經萃取,再經轉酯化即可產製出生質柴油。萃取油脂所剩餘之乾藻體可直接做為動物飼料添加物,或經快速裂解生產可替代鍋爐用油之生質燃油。因此,本研究以台灣水域中油脂含量較高之藻種為對象,評估利用本土淡水藻類產製生質柴油之可行性。
評估結果顯示,微藻在產率達100噸/公頃/年、油脂含量40 %以上的條件下,生質柴油生產成本較具市場競爭力。微藻含油量40 %時,生產每公斤生質柴油單位總成本為27.61元;而微藻含油量增加至50 %時,每公斤生質柴油單位總成本可降低至23.29元,與目前高級柴油24.5元/公升之售價相當。萃取油脂所剩餘之藻細胞為有價之副產品,可降低生質柴油產製成本;即直接做為動物飼料添加物,或經快速裂解產製出可替代鍋爐用油之生質燃油。
台灣水域中普遍存在之綠藻Botryococcus braunii及矽藻Nitzschia palea,其油脂量在40 %以上,極具潛力成為生產生質柴油之料源。
Fossil fuels are limited around the world and using fossil fuels results in the emitting of greenhouse gases which cause the global warming and climate change. Therefore, more and more countries endeavor to develop renewable energies as an alternative energy to prevent the aggravation of global warming.
Biomass energy which stores in biomass is one of the major renewable energies in the world. In all kinds of biomasses, alga is one of the most potential species due to its higher growth rate. Alga can be systematically cultivated and harvested. After drying, lipid contained in algae can be extracted to produce bio-diesel. The residua can also be used as additives in animal feed or used as feedstock in fast-pyrolysis process to produce bio-oil. Therefore, algae seem to be a very attractive source of bio-energy and is evaluated it’s feasibility to produce biodiesel in this paper.
The evaluation shows that the biodiesel production cost of using algae with 40 % lipid content and 100 ton/ha/y production rate as feedstock is 27.61 NT/kg. This is much lower than those of other energy crop suitable cultivated in Taiwan. While the lipid content of algae increases from 40 % to 50 %, the biodiesel production cost even lowers to 23.29 NT/kg which is equal to the present diesel retail price (24.5 NT/L) in Taiwan. This shows excellent competitiveness of using oil-rich alga to produce biodiesel. Moreover, as the alga residua could be sold as additives in animal feeds or used to produce bio-oil, the economic benefits could be even higher.
In Taiwan, many native oil-rich algae species like Botryococcus braunii and Nitzschia palea contain more than 40 % of lipid. These algae are highly potential feedstock to produce biodiesel. However, we strongly recommend further studies and demonstrations should be carried out prior to large scale commercialization.
致謝
中文摘要 i
英文摘要 iii
目錄 v
圖目錄 vii
表目錄 viii
壹、前言 1
貳、文獻介紹 3
叁、油脂藻類 6
一、油脂藻類之定義 6
二、本土性油脂藻類之分佈 10
三、藻類油脂檢測 13
肆、影響藻類生長及油脂含量之因子 15
一、油脂藻類生長之環境因子 15
(一)光照強度 15
(二)碳源 16
(三)溫度 18
二、提高藻類油脂含量之因子 22
(一)培養基成分 25
1.氮源 25
2.矽源 28
(二)營養方式 29
伍、藻類產製生質柴油之方法 31
一、放大培養介紹 31
二、生質柴油之產製 34
(一)轉酯化 36
三、生質燃油之產製 37
(一)快速裂解 37
(二)液化 38
陸、藻類對環境之效益 40
一、CO2減量 40
二、生質柴油對環境之效益 41
柒、評估結果 43
一、產製生質柴油料源比較 43
二、經濟效益及可行性評估 47
捌、結論與建議 60
玖、參考文獻 62
附錄一 培養基介紹 73
附錄二 經濟效益分析資料 83
工研院能環所,2001,台灣地區生質柴油應用評估報告,美國黃 豆協會。
工研院能環所,2005,生質燃料技術開發與推廣計畫計畫書,經濟部能源局。
中央氣象局,2006,http://www.cwb.gov.tw/V5/index.htm。
台灣地區水庫浮游藻類,行政院環境保護署,http://www.epa.gov.tw/student/algae/data/about.html
台灣水產試驗所東港分所,1999,餌料生物之培養與利用。
行政院環境保護署,2005,93年台灣地區環境水質監測年報-水庫水質篇。
吳俊哲、胡苔莉、喻家駿、童翔新、吳志超與郭鍾秀,1999,八十八年度台灣地區主要水庫水質監測計畫,EPA-88-G103-03-404,行政院環保署,台北。
吳俊哲、胡苔莉、吳志超與郭鍾秀,2000,八十九年度台灣地區主要水庫水質監測計畫,EPA-89-G103-03-1329,行政院環保署,台北。
吳俊哲、胡苔莉、吳志超與郭鍾秀,2001,九十年度台灣地區主要水庫水質監測計畫,EPA-89-Z102-02-106-90A047,行政院環保署,台北。
吳俊哲、胡苔莉、吳志超與郭鍾秀,2003,九十一年度日月潭水庫水質監測系統設置及研究計畫,南投縣環保局,南投。
吳耿東與李宏台,2004,生質能源-化腐朽為能源,科學發展月刊,第383期,20-27。
林良平,1991,小球藻之混營生長及微藻在生態生產上所扮演的角色,中華生質能源學會會誌,第十卷第三、四期,89-98。
林榮芳與黃檀溪,2002,比較耐熱性小球藻異營生長之特性,師大學報數理與科技類,47(1),31-40。
林俊義,2005,「推動國內生質燃料與能源作物論壇」論文集,83-101。
郁仁貽譯,1983,最新油脂工業大全, 徐氏基金會,台北。
徐敬衡、胡長良與劉文佐,2002,探討氧氣供給對Kineosphaera limosa生產PHB之關係,第七屆生化工程研討會論文集,449-453。
許正隆,2000,綠藻NC64A之培養及其透明質酸之生產,清華大學化學工程系碩士論文。
郭鍾秀、張柏成與林珮君,1990,北港溪水質評估及藻類指標之研究,中華民國環境工程學會第十五屆廢水處理技術研討會論文集。
郭鍾秀與田志仁,1999,以生物指標(附著性矽藻)評估烏溪水質,第六屆海峽兩岸環境保護研討會論文集,高雄。
梁正中、胡苔莉、吳俊哲與郭鍾秀,2005,九十三年度台中港區環境調查監測分析報告書,台中港務局。
喻家駿與郭鍾秀,1993,北港溪水質生物指標及水質維護之研究(第三年),國科會專題研究計畫成果報告。
劉清標,2000,海洋微藻Isochrysis sp. CCMP 1324 超微細結構與不飽和脂肪酸之生成,國立臺灣大學農業化學研究所博士論文。
德基水庫藻類生態監測,經濟部水利署,http://hysearch.wra.gov.tw/wra_ext/tech/DD/DD-04.htm.
翡翠水庫藻類資料庫,中央研究院植物研究所,http://wwwsinica.edu.tw/-dbalage.
Aaronson, S., 1973, Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica, J. Phycol., 9, 111-113.
Acikgoz, C., Onay, O. & Kockar, O. M., 2004, Fast pyolysis of linseed: product yields and compositions, J. Analy. Appl. Pyolysis, 71(2), 417-429.
Albitskaya, O. N., Zaitseva, G. N., Pakhomova, M. V., Goronkova, O. I., Silakova, G. S. & Ermokhina, T. M., 1974, Physiological and biochemical peculiarities of a culture of Spirulina platensis, Mikrobiol., 43, 649-653.
Ates, F., Pütün, E. & Pütün, A. E., 2004, Fast pyolysis of sesame stalk: yields and structural analysis of bio-oil, J. Analy. Appl. Pyolysis, 71(2), 779-790
Becker, E. W., 1984, Biotechnology and exploitation of the green alga Scenedesmus obliquus in India, Biomass, 4, 1-19.
Becker, E. W. & Venkataraman, L. V., 1984, Production and utilization of the blue-green alga Spirulina in India, Biomass, 4, 105-125.
Becker, E. W., 1994, Large-scale cultivation in Microalgae: biotechnology and microbiology, Cambridge University Press, New York.
Borowitzka, M. A., 1988a, Fats, oils and hydrocarbons in Microalgal biotechnology, Edited by Borowitzka, M. A. & Borowitzka, L. J., Cambridge University Press, New York.
Borowitzka, M. A., 1988b, Algal growth media and sources of algal cultures in Microalgal biotechnology, Edited by Borowitzka, M. A. & Borowitzka, L. J., Cambridge University Press, New York.
Cooksey, K. E., Guckert, J. B., Williams, S. A. & Callib, P. R., 1987, Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red, Microbiol. Methods, 6, 333-345.
Czernik, S., Scahill, J. & Diebold, J., 1995, The production of liquid fuel by fast pyrolysis of biomass, J. Solar Energy Eng., 117(1), 2-6.
Daryl, R. & Peterson, C., 1997, Toxicity studies with biodiesel. In Proceedings of the Conference on Commercialization of Biodiesel: Environmental and Health Benefits, University of Idaho, Moscow, Idaho.
Feng, F.-Y., Yang, W., Jiang, G.-Z., Xu, Y.-N. & Kuang, T.-Y., 2005, Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium, Process Biochem., 40(3-4), 1315-1318.
Hall, D. O., 1997, Biomass energy in industrialized countries-A view of the future, Forest Ecol. Mgmt., 91, 17-45.
Hu, Q., Guterman, H. & Richmond, A., 1996, A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs, Biotechnol. Bioeng., 51, 51-60.
Illman, A. M., Scragg, A. H. & Shales, S. W., 2000, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzy. Microbial Technol., 27, 631-635.
Ip, P.-F., Wong, K.-H. & Chen, F., 2004, Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture, Process Biochem., 39(11), 1761-1766.
Ip, P.-F. & Chen, F., 2005, Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark, Process Biochem., 40(2), 733-738.
Kaplan, D., Heimer, Y. M., Abeliovich, A. & Goldsbrough, P. B., 1995, Cadmium toxicity and resistance in Chlorella sp., Plant Sci., 109(2), 129-137.
Kosaric, N. & Velikonja, J., 1995, Liquid & gaseous fuels from biotechnology: challenge and opportunities, FEMS Microbiol. Rev. 16,111-142.
Kozlowska-Szerenos, B., Zielinski, P. & Maleszewski, S., 2000, Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply, Plant Physiol. Biochem., 38(9), 727-734.
Lau, P. S., Tam, N. F. Y. & Wong, Y. S., 1995, Effect of algal density on nutrient removal from primary settled wastewater, Environ. Pollut., 89(1-2), 59-66.
Loseva, N. L., Alyabyev, A.J., Rackimova, G. G. & Estrina, R. I., 1995, Aspects of the energetic balance of plant cells under different salt conditions, Thermochim. Acta., 251, 357-362.
Maeda, K., Owada, M., Kimura, N., Omata, K. & Karube, I., 1995, CO2 fixation from the flue gas on coal-fired thermal power plant by microalga, Energy Convers. Mgmt., 36(6-9), 717-720.
McEvoy, E., Wright, P. C. & Bustard, M. T., 2004, The effect of high concentration isopropanol on the growth of a solvent-tolerant strain of Chlorella vulgaris, Enzyme Microb. Technol., 35(2-3), 140-146.
Miao, X. L. & Wu, Q. Y., 2004, High yield bio-oil production from fast pyolysis by metabolic controlling of Chlorella protothecoides, J. Biotech., 110, 85-93.
Miao, X. L., Wu, Q. Y. & Yang, C. Y., 2004, Fast pyolysis of microalgae to produce renewable fuels, J. Anal. Appl. Pyolysis, 71, 855-863.
Minowa, T., Yokoyama, S.-Y., Kishimoto, M. & Okakurat, T., 1995, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel, 74(12), 1735-1738.
Minowa, T. & Sawayama, S., 1999, A novel microalgal system for energy production with nitrogen cycling, Fuel, 78, 1213-1215.
Ogbonna, J. C., Masui, H. & Tanaka, H., 1998, Sequential heterotrophic/autotrophic cultivation - An efficient method of producing Chlorella biomass for health food and animal feed, Oceanographic Literature Review, 45(8), 1439.
Oh-Hama, T. & Miyachi, S., 1988, Chlorella in Microalgal biotechnology, Edited by Borowitzka, M. A. & Borowitzka, L. J., Cambridge University Press, New York.
Onay, Ö.; Beis, S.H. & Koçkar, Ö. M., 2001, Fast pyolysis of rape seed in a well-swept fixed-bed reactor, J. Analy. Appl. Pyolysis, 58-59, 995-1007.
Onay, Ö. & Koçkar, Ö. M., 2004, Fixed-bed pyolysis of rapeseed (Brassica napus L.), Biomass and Bioenergy, 26(3), 289-299.
Orcutt, D. M. & Patterson, G. W., 1975, Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media, Comp. Biochem. Physiol., 50B, 579-583.
Pedroni, P., Davison, J., Beckert, H., Bergman, P. & Benemann, J., 2001, A proposal to establish an International Network on biofixation of CO2 and greenhouse gas abatement with microalgae, J. Energy & Environ. Res., 1(1) 136-150.
Rai, L. C., Rai, P. K. & Mallick, N., 1996, Regulation of heavy metal toxicity in acid-tolerant Chlorella: Physiological and biochemical approaches, Environ. Exp. bot., 36(1), 99-109
Rai, L.C., Husaini, Y. & Mallick, N., 1998, pH-altered interaction of aluminium and fluoride on nutrient uptake, photosynthesis and other variables of Chlorella vulgaris, Aquat. Toxicol., 42(1), 67-84
Ratledge, C., 1989, Biotechnology of oil and fats, In Microbial Lipids, Vol. 2, Edited by Ratledge, C. & Wilkinson, S. G., Academic Press, London.
Ratledge, C., 1993, Single cell oils--have they a biotechnological future? Trends Biotechnol., 11(7) 278-284.
Renaud, S. M., Thinh, L. V., Lambrinidis, G. & Parry, D. L., 2002, Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures, Aquaculture, 211, 195-214.
Sarma, S. S. S., Nandini, S. & Flores, J. L. G., 2001, Effect of methyl parathion on the population growth of the rotifer Brachionus patulus (O. F. Müller) under different algal food (Chlorella vulgaris) densities, Ecotoxicol. Environ. Saf., 48(2), 190-195.
Sato, T., Usui, S., Tsuchiya, Y. & Kondo, Y., 2006, Invention of outdoor closed type photobioreactor for microalgae, Energy Conver. Mgmt, 47, 791–799.
Sawayama, S., Inoue, S., Dote, Y. & Yokoyama, S-Y, 1995, CO2 fixation and oil production through microalga, Energy Convers. Mgmt. 36(6-9), 729-731.
Sawayama, S., Minowa, T. & Yokoyama, S-Y., 1999, Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae, Biomass Bioenergy, 17, 33-39.
Scragg, A. H., Illman, A. M., Carden, A. & Shales, S. W., 2002, Growth of microalgae with increased calorific values in a tubular bioreactor, Biomass Bioenergy, 23, 67-73.
Scragg, A. H., Spiller, L. & Morrison, J., 2003a, The effect of 2,4-dichlorophenol on the microalga Chlorella VT-1, Enzy. Microbiol. Technol., 32(5), 616-622.
Scragg, A. H., Morrison, J. & Shales, S. W., 2003b, The use of a fuel containing Chlorella vulgaris in a diesel engine, Enzy. Microbiol. Technol., 33(7), 884-889.
Seto, A., Wang, H. L. & Hesseltine, C. W., 1984 Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Ame. Oil Chem. Soc., 61, 892-894.
Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P., 1998, A look back at the U.S. Department of Energy’s aquatic species program-biofuel from algae, National Renewable Energy Laboratory, DOE, Colorado.
Shi, X.-M., Zhang, X.-W. & Chen, F., 2000, Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources, Enzyme Microb. Technol., 27(3-5), 312-318.
Takeda, T., Yoshimura, K., Ishikawa, T. & Shigeoka, S., 1998, Purification and characterization of ascorbate peroxidase in Chlorella vulgaris, Biochimie, 80(4), 295-301.
Tam, N. F. Y. & Wong, Y. S., 1996, Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media, Bioresource Technol., 57(1), 45-50.
Tapie, P. & Bernard, A., 1987, Microalgae production: Technical and economic evaluations, Biotechnol. Bioeng., 32, 873-885.
Tortora, G. J., Funke, B. R. & Case, C. L., 2005, Microbiology: An Introduction, Pearson Benjamin Cummings, California, Brief edition, 349.
Tsang, C. K., Lau, P. S., Tam, N. F. Y. & Wong, Y.S., 1999, Biodegradation capacity of tributyltin by two Chlorella species, Environ. Pollut., 105(3), 289-297.
Watanabe, A., 1960, List of algal strains in the collection at the institute of applied microbiology, J. Gen. Appl. Microbiol., 6, 283-292.
Watanabe, Y. & Saiki, H., 1997, Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas, Energy Convers. Mgmt., 38, 499-503.
Weete, J. D., Kim, H., Gandhi, S. R., Y. & Dute, R., 1997, Lipids and ultrastructure of Thraustochytrium sp. ATCC 26185, Lipids, 32(8), 839-845.
Wyman, C. E. & Goodman, B. J., 1993, Biotechnology for production of fuels, chemicals, and materials from biomass, Appl. Biochem. Biotech., 39/40, 41-59.
Yanagi, M., Watnabe, Y. & Saiki, H., 1995, CO2 fixation by Chlorella sp. HA-1 and its utilization, Energy Convers. Mgmt., 36(6-9), 713-716.
Zhu, C. J., Lee, Y. K. & Chao, T. M., 1997, Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1, J. Appl. Phycol., 9, 451-457.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 31.梁雅舒,〈祖父母的孩子--隔代教養家庭輔導〉,《學生輔導通訊》,88期(2003年),頁34-41。
2. 32.傅佩榮,〈家庭觀念的傳統與現代〉,《社區發展季刊》,68期(1994年),頁19-21。
3. 28.馮燕,〈從系統與生態觀點看家庭倫理的變遷與調適〉,《理論與政策》,48期(1998年),頁159-176。
4. 10.利翠珊,〈家庭心理學的系統觀點與研究〉,《應用心理研究》,2期(1999年),頁21-40。
5. 29.陳玉賢,〈社會變遷中的教師困境角色調適〉,《國民教育》,38期(1998年),頁65-70。
6. 21.吳耀明,〈家庭場域對兒童學習成效之影響〉,《師友月刊》,439期(2004年0,頁31-34。
7. 20.吳武典、林繼盛,〈加強家庭聯繫對兒童學習效果與家庭氣氛的影響〉,《教育心理學報》,18期(1985年),頁97-114。
8. 19.吳武典、林繼盛,〈家庭與學校聯繫程度與兒童學業成就和生活適應之關係〉,《教育心理學報》,15期(1982年),頁127-138。
9. 14.孫世維,〈親子依附與分離-個體化大學時期的發展〉,《教育與心理研究》,20期(1997年),頁271-296。
10. 13.周崇儒,〈如何建立良好的親師溝通〉,《教育實習輔導》,20期(1999年),頁1-8。
11. 11.沙依仁,〈在學青少年的行為與其家庭因素關係之研究〉,《社會科學論叢》,34期(1986年),頁339-380。
12. 9.巫有鎰,〈影響國小學生學業成就的因果機制-以台北市和台東縣做比較〉,《台灣師大教育研究集刊》,43期(1999年),頁213-242。
13. 8.李懿芳、羅淑芬,〈英國小學家庭作業的規定、實際情況、督導、執行效果與建議〉,《比較教育》,44期(1997年),頁69-76。
14. 33.黃春枝,〈國中學生親子關係與學校生活適應之研究〉,《國立政治大學學報》,55期(1987年),頁83-140。
15. 6.任秀媚,〈家長參與幼兒學校學習活動隊幼兒社會行為的影響〉,《新竹師專學報》,12期(1985年),頁125-180。