跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 01:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊景盛
研究生(外文):Jing-Sheng Yang
論文名稱:臭氧高級氧化程序應用於異丙醇氧化之研究
論文名稱(外文):Oxidation of 2-propanol Using Ozone-based Advanced Oxidation Processes
指導教授:吳俊哲
指導教授(外文):Jiunn-jer Wu
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:110
中文關鍵詞:臭氧高級氧化程序氧化反應速率質量傳輸異丙醇
外文關鍵詞:KineticsMass-transferIPAOzone-based Advanced Oxidation Processes
相關次數:
  • 被引用被引用:3
  • 點閱點閱:2923
  • 評分評分:
  • 下載下載:220
  • 收藏至我的研究室書目清單書目收藏:1
高級氧化程序應用於廢水中難分解有機物之氧化為一具有前景的技術。隨著國內高科技產業蓬勃發展,異丙醇溶劑被業界大量使用,廢水含生物難分解之異丙醇亦大幅增加,增加了廢水處理之困難度與環境問題之複雜性。因此,本研究乃設計實驗系統來測試各種高級氧化程序(包括(O3, O3/UV, H2O2/UV, H2O2/O3, H2O2/O3/UV)對於異丙醇氧化降解之影響,並調整不同實驗參數與因子以瞭解其影響程度。另外,本研究亦針對臭氧高級氧化程序建立其質量傳輸與化學氧化之模式,以用於預測異丙醇之分解與中間產物之形成。實驗結果得知,高級氧化程序降解異丙醇的反應會受到不同溶液pH值的影響,當pH值為3及7時,以H2O2/O3/UV為最佳降解之程序,可完全去除水中1 g/L異丙醇,且完全礦化率分別為58 %、80 %。然而,當pH提升至10,H2O2/O3 和H2O2/O3/UV兩者對異丙醇之降解能力皆趨於相當,亦能完全去除水中1 g/L異丙醇,且完全礦化率皆降為40 %。若選擇H2O2/O3/UV程序且放大其操作參數以適用於半導體實際廢水中之異丙醇達完全去除,整體處理成本之評估較目前委外燃燒的方式每年可節省40 %以上。
本研究以臭氧作為主要高級氧化機制對於異丙醇之降解效率較其它高級氧化程序為佳,而且發現異丙醇降解過程之主要副產物為丙酮,次要副產物則如甲酸、乙酸以及草酸等。此外,結合質量傳輸和反應動力之模式可以預測異丙醇降解與主要副產物丙酮之生成情形。臭氧自解反應於純水中pH 值為3及7時皆為一階反應,而且在臭氧質量傳輸結果發現:由於水中的氫氧根離子會加速臭氧發生自解的化學反應,因此pH值愈高會加速臭氧的質傳速率。
如果結合化學反應動力,將臭氧分子和氫氧自由基對異丙醇與其它副產物的反應速率常數納入考量,模式建立之聯立非線性方程式可藉由Mathematica來預測臭氧與主要反應物的濃度變化,預測結果顯示:當pH值為3及7時,在臭氧及臭氧結合UV的反應係數分別為0.008、0.0236、1.4931、1.4909,發現臭氧結合UV此程序會產生較多的氫氧自由基而形成複雜的競爭機制使得反應係數大於臭氧程序。
Advanced oxidation processes (AOPs) is a promising technology for the treatment of wastewaters containing non-easily removable organic compounds. 2-propanol (IPA) was a group of special interest due to its high toxicity and low biodegradability. This thesis evaluates IPA degradation by several of AOP processes (O3, O3/UV, H2O2/UV, H2O2/O3, H2O2/O3/UV). The degradation has been carried out at various physic-chemical conditions. The results at different pH demonstrate that H2O2/O3/UV process is most efficient either at pH 3 and 7. Under such circumstance, 1 g/L of IPA can be decomposed completely and the TOC mineralization is achieved by 58 % and 80 %. However, at pH 10 the IPA removal efficiency by H2O2/O3 and UV/H2O2/O3 processes was almost identical, but the decomposition becomes lower comparing to acidic or neutral pHs. If applying UV/H2O2/O3 process to a pilot-scale plant, economic evaluation has demonstrated that using AOPs would save approximately 40% cost comparing with incineration treatment.
It is concluded that ozone based AOP processes are more efficient at IPA removal in wastewater than other AOPs. Acetone is identified as a primary degradation intermediate and subsequently acetic acid, formic acid, oxalic acid are identified as secondary degradation intermediates. In addition, an oxidation model incorporating mass transfer and kinetics approach based upon the rate constants for the reactions with ozone and OH radicals was developed to predict the degradation of IPA and its main byproduct of acetone formation. The self decomposition of ozone in buffered DDI water at pH 3 and 7 both occurred via a first order reaction. The ozone mass transfer coefficients are considerably higher at pH 7 than pH 3 due to the participation in the chemical reaction towards hydroxyl ion.
The oxidation model considering side reactions between ozone and OH radicals towards with other byproducts or impurities has been established using non-linear simultaneous differential equations. The reaction coefficients for IPA degradation are 0.008, 0.0236, 1.4931, 1.4909 1/sec at pH 3 and 7 in O3 and O3/UV processes, respectively. The larger reaction coefficient found in ozone/UV system indicates more competition mechanisms for hydroxyl radicals in such complicated reaction system.
TABLE OF CONTENTS
中文摘要 Ⅰ
ABSTRACT Ⅱ
LIST OF TABLES Ⅵ
LIST OF FIGURES Ⅶ
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research Motivation 1
1.3 Research Goals 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 Semiconductor Industry 4
2.1.1 Manufacturing Processes in Semiconductor Industry 5
2.1.2 Pollution Produced from Semiconductor Processes 6
2.2 Characteristic of Isopropyl Alcohol 7
2.3 Ozonation 8
2.3.1 Generation of Ozone 8
2.3.2 Physical and Chemical Properties 9
2.3.3 Mass Transfer of Ozone 11
2.3.3.1 Physical Absorption 11
2.3.3.2 Absorption with chemical reaction 13
2.3.4 Reaction of Ozone towards with Organic Matters 16
2.3.4.1 Direct-O3 Reaction 17
2.3.4.2 Free-radical Reactions 20
2.4 Advanced Oxidation Processes 22
2.4.1 Hydroxyl Radicals 24
2.4.2 UV/hydrogen peroxide 25
2.4.3 UV/Ozone 26
2.4.4 Peroxone (H2O2/O3) 27
2.4.5 (H2O2/O3/UV) 28
2.5 Review of Oxidation Mechanisms of IPA and Acetone 29
2.6 Review of IPA Oxidation Treatment 33
Chapter 3 MATERIALS AND METHODS 35
3.1 Phase I 37
3.2 Phase II 40
3.3 Materials 44
3.4 Experimental procedures 45
3.4.1 Phase I 45
3.4.2 Phase II 45
3.4.2.1 Ozone Mass-Transfer Model 45
3.4.2.2 OH Radical Kinetic Study 46
3.4.2.3 Integrated Model Development 47
3.5. Analytical procedures 51
Chapter 4 RESULTS AND DISCUSSION 52
4.1 Phase I 52
4.1.1 Background Experiments (O2 Stripping, H2O2 Dosage, UV) 52
4.1.2 O3 and O3/UV Processes 53
4.1.3 H2O2/UV Process 57
4.1.4 H2O2/O3 Process 58
4.1.5 H2O2/O3/UV Process 63
4.1.6 Comparison of AOPs on IPA Degradation 65
4.1.7 Economic Analysis for IPA Degradation Using AOPs 66
4.1.8 Product Formation and Identification during IPA Oxidation 68
4.1.9 Intermediates Formation Pathway during IPA Oxidation 70
4.2 Phase II 72
4.2.1 Self-Decomposition of Ozone in Water 72
4.2.2 Ozone Mass-Transfer Coefficient KLa 73
4.2.3 O3/UV Mass-Transfer 77
4.2.4 Kinetic study 78
4.2.5 Model Establishment 81
4.2.6 Comparison between experimental result and model prediction 82
Chapter 5 CONCLUSION & SUGGESTION 88
5.1 Conclusion 89
5.2 Suggestion 90
REFERENCES 91
APPENDIX 97
References
1.Williams, E.D (2004), “Environmental impacts of microchip manufacture”, Thin Solid Films, 461, 2-6
2.Lin, H.S., Wang, S.C. (2004), “Recovery of isopropyl alcohol from waste solvent of a semiconductor plant”, Journal of Hazardous Materials, 106, 161-168.
3.McGuire, G.E. (1988), “Semiconductor Materials and Process Technology Handbook, Noyes Publications”, Westwood.
4.Kern, K. (1993), “Handbook of Semiconductor Wafer Cleaning Technology”, Noyes Publications, Westwood.
5.Giles, D.G., Loehr, R.G. (1994), Environ. Eng, ASCE 120, 72.
6.Zant, P.V. (1997), Microchip Fabrication, 3rd ed., McGraw-Hill, New York.
7.Treon, J.F., Stasik., M.J. (1983), “Encyclopaedia of Occupational Health and Safety”, ILO, 109.
8.Masschelein, W.J. (1998), “Ozone generation: use of air, oxygen, or air simpsonized with oxygen”, Ozone Science and Engineering, 20, 191-203.
9.Barbe, A., Secroun, C., Jouve, P., Mol, J., (1974), Spectr, 49, 171.
10.Tramborulo, R., Ghosh, S.N., Burrus, C.A., Gordy, W.J. (1953), Chem. Phys. 21, 851.
11.Tanaka, T., Morino, Y., Mol. J. (1970), Spectr, 33, 538.
12.Bard, A.J., Parsons, R., Jordan, J. (1985), “Standard Electrode Potentials in Aqueous Solutions”, IUPAC, 1, 58.
13.Klein, W., Jansen, M., Anorg, Z. (2000), Chem, 626, 136.
14.Perry, J.H. (1963), Chemical Engineers, Handbook, McGrawHill, New-York 4th ed., 14-6.
15.Charpentier J. C. (1981) “Ach~ances in Chemical Engineering”, Academic Press, New York, 11, 3-40.
16.Hatta S. (1932), “Absorption velocity of gases by liquids. II. Theoretical considerations of gas absorption due to chemical reactions”, Technology Rep. T6hoku Univ, 10, 119-135.
17.Danckwerts, P.V. (1970), Gas-Liquid Reactions, McGraw-Hill, New York, 17-20.
18.Rice, R.G. Browning, M.E. (1981), “Ozone Treatment of Industrial Wastewater, Noyes Data Corp”, Park Ridge, NJ,.
19.Masschelein, W.J. (1982), “Ozonization Manual for Water and Wastewater Treatment”, Wiley, New York.
20.Kondratev, K.K., Varotsos, C.A. (2000), “Atmospheric Ozone Variability”, Springer-Praxis, Berlin.
21.Doré, M. (1989), “Chimie des Oxydants et traitement des Eaux”, Lavoisier Tec & Doc, Paris,.
22.Langlais, B., Reckhow, A.D., Brink, R.D. (1991), “Ozone in Water Treatment: Application and Engineering”, Lewis Publishers, Chelsea, MI.
23.Hoigné, J.H., Bader. (1983), “Rate Constants of reactions of ozone with organic and inorganic compounds in water I: non-dissociating organic compounds”, Wat. Res,17, 173.
24.Bailey, P.S. (1978), “Ozonation in Organic Chemistry”, Academic Press, Inc., New York.
25.Hoigne, J., Bader. (1977), “Ozonation of Water: Selectivity and Rate of Oxidation of Solutes”, Proc. 3rd IOA Congress, Paris, France.
26.Hoigne, J., Bader., (1985), “Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water. Ⅲ: Inorganic Compounds and Radicals”, Wtr. Res., 19:8:993.
27.Staehelin, J., Hogine, J. (1985), “Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promotors and Inhibitors of Radical Chain Reactions”, Envir. Sci. Technol., 19:120-126.
28.Himebaugh, S.W. (1994), “Advanced Oxidation of Munitions in Water”, Fer III and WM II Conference and Exhibition.
29.Hong, A., Zappi, E.M., Kuo, H.C., Hill, O.D. (1996), “Modeling the kinetics of illuminated and dark advanced oxidation processes”, ASCE J. Environ. Eng. 122 (1) 58–62.
30.Duguet, P.J., Anselme, C., Mallevialle, J. (1989), “New Advances in Oxidation Processes: Some Examples of Application of Ozone/Hydrogen Peroxide Combination for the Removal of Micropollutants for Drinking Water”, Water Nagoya, ASPAC IWSA.
31.Zappi, E.M. (1995), “Peroxone Oxidation Treatment of 2,4,6-Trinitrotoluene Contaminated Waters With and Without Sonolytic Catalyzation”, Chemical Engineering in the Department of Chemical Engineering.
32.Kawaguchi, H.(1993), “Photooxidation of 2-propanol in aqueous solution in the presence of hydrogen peroxide”, Chemosphere, 27, 577–584.
33.Guittonneau, S., De Laat, J., Duguet, P.J., Bonnel, C., Dore, M. (1990), “Oxidation of p-choloronitrobenzene in dilute aqueous solution by O3 + UV and H2O2 + UV: a comparative study”, Ozone Sci. Eng. 12 73–94.
34.Buettner, G. R. (1985), “Spin trapping of hydroxyl radicals, in: R. A. Greenwald (ed)”, CRC Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, 151-155.
35.Spinks, J. W. T., Woods, R. J. (1990), “An Introduction to Radiation Chemistry”, John Wiley & Sons, New York, NY.
36.Rice, G.R., Aharon, N. (1982), Handbook of ozone technology and applications, 347, 360 , 374-375.
37.Wiley. (1985), Water Treatment Principals and Design. New York, NY. James Montgomery Consulting Engineers, Inc.
38.Prengle, W.H., Mauk, E.C. (1978), “New technology: UV/ozone chemical oxidation wastewater process for metal complexes, organic species and disinfection, in: Water”, AIChE Symposium Series, 74, 228–243.
39.Zappi, M., Toro, E., Jones, R., Talley, J. (1995), “Treating Leachate from the Strasburg Site Using Advanced Oxidation Processes”, Report for the US Army Corps of EngineersWaterways Experiment Station. Vicksburg, MS.
40.Jody, J.B., Klein, J.M., Judeikis, H. (1989), “Catalytic UV/O3 Treatment of Wastewater Containing Mixtures of Organic and Inorganic Pollutants”, Presented at the 9th World Ozone Congress, New York.
41.Zappi, M. (1998), “Treatment of Explosives Contaminated Groundwaters, Encyclopedia of Environmental Analysis and Remediation”, Wiley, New York, NY,
42.Zeff J.D., Barich J.T. (1990), “Symposium on Advanced Oxidation Processes and Treatment of Contaminated Water and Air: Wastewater Technologies”. Center, Ontario (Canad!a).
43.Mokrini, A., Oussi, D., Esplugas, S. (1997), “Oxidation of aromatic compounds with UV radiation/ozone/hydrogen peroxide”.Water Sci Technol;35, 95–102.
44.Legrini, O., Oliveros, E., Braun A.M. (1983), “Photochemical processes for water treatment”. Chem Rev;93: 671–98.
45.Sun, G.S., Lin, Y. (1995), “In situ FTIR spectroscopic investigations of reaction mechanism of isopropanol oxidation on platinum single crystal electrodes”. Electmhimica Acta, Vol. 41, No. 5. pp. 693-700.
46.Kazutaka, S., Yoshiaki, H. (2000), “Shock-Tube and Modeling Study of Acetone Pyrolysis and Oxidation Department of Chemistry, Faculty of Science”, Ehime University, Bunkyo-cho, Matsuyama 790-8577, Japan
47.Winer, M., James, N., Pitts, J. (1976), “relative rate constants for the reactions of OH radicals”. Statewide 4ir Pollution Research Center, University of California, Riverside. California 92502. USA
48.Atkinson, R., Pitts J. (1975), 3. Chem. Phys. 63 1321
49.Laity, J.L., Burstein, L.G., Appel. B.R. (1973), “Solvents theory and practice”, Advances in Chemistry Series No. 124 American Chemical Society, Washington, 95.
50.Stefan, M.J., Hoy, A.R., Bolton, J.R. (1996), “Kinetics and Mechanism of the Degradation and Mineralizaiton of Acetone in Dilute Aqueous Solution Sensitized by the UV Photolysis of Hydrogen Peroxide”. Environ. Sci. Technol., 30, 2382-2390.
51.Coronado, J.M., Kataoka, S., Isabel, T.T., Marc, A.A. (2003), “Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2: simultaneous FTIR analysis of gas and surface species”. Journal of Catalysis 219–230.
52.Shaybe, H.A., Wahab, F.M., SULTAN, D.M. (1987), “Thermometric study on the oxidation of isopropyl alcohol in some mineral acids”. Thermochimim Acts, 109,367-376.
53.Tiziana, A., Gianguido, R., Elisabetta, F., Guido B. (1999), “A study of anatase–supported Mn oxide as catalysts for 2-propanol oxidation Applied Catalysis B: Environmental”, 22, 249-259.
54.Larson, S.A., Widegren, J.A., Falconer, J. L. (1995), “Transient Studies of 2-Propanol Photocatalytic Oxidation on Titania Journal of Catalysis”, 157, 611-625.
55.Chang, K., Lu, C. (2003), “Biofiltration of isopropyl alcohol and acetone mixtures by a trickle-bed air biofilter Process Biochemistry”, 39, 415-423.
56.Stelmaszek, J. (1979), “Untersuchungen der oÈkonomischen EffektivitaÈt von verschiedenen Wasserabscheidungsmethoden”, Chem.-Tech. 611±617.
57.Raiser, T., Steinhauser, H. (1994), “Azeotrope A., Hybridverfahren ± eine Kombination von Rektifikation und Pervaporation”, Chem.-Tech. 44±46.
58.BruÈschke, H.E. (1995), “Industrial application of membrane separation processes”, Pure Appl. Chem. 67, 993±1002.
59.Lin, H.S., Wang, S.C. (2004), “Recovery of isopropyl alcohol from waste solvent of a semiconductor plant Journal of Hazardous Materials”, 106, 161-168.
60.McGuire, G.E. (1988), “Semiconductor Materials and Process Technology Handbook, Noyes Publications”, Westwood, NJ.
61.David, G.G., Raymond, C.L. (1994), “Waste generation and minimization on semiconductor industry”, ASCE J Environ Eng, 120(1), 72–86.
62.Beltran, J.F., Encinar M.J., Alonso, A.M. (1998), “Nitroaromatic Hydrocarbon Ozonation in Water. 2. Combined Ozonation with Hydrogen Peroxide or UV Radiation”, Ind. Eng. Chem. Res., 37, 32-40.
63.Kern, K. (1993), “Handbook of Semiconductor Wafer Cleaning Technology”, Noyes Publications, Westwood, NJ.
64.Peyton, R.G., Huang, Y.F., Burleson, L.J., Glaze, H.W. (1982), “Destruction of pollutants in water with ozone in combination with ultraviolet radiation. Part I. General principles and oxidation of tetrachloroethylene”, Environ. Sci. Technol., 16, 449–453.
65.Staehelin, J., Hoigne, J. (1982), “Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide”, Environ. Sci. Technol., 16, 676–681.
66.Ben´ıtez, J.F., Beltrán-Heredia, J., Acero, L.J., Rubio, J.F. (1999), “Chemical decomposition of 2,4,6-trichlorophenol by ozone, Fenton’s reagent, and UV radiation”, Ind. Eng. Chem. Res., 38 (4), 1341–1349.
67.Weeks, J.L., Rabani, J.J. (1966), Phys Chem, 70(7), 2100-2106
68.Black, E.D., Hayon, E.J. (1970), Phys Chem, 74(17), 3199-3203
69.Gogate, R.P., Pandit, B.A. (2004), “A review of imperative technologies for wastewater treatment Ⅱ:hybird methods”, Environment Research, 8, 553-597.
70.Suh, H.J., Mohseni, M. (2004), “A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide”, Water Research, 38, 2596-2604.
71.Roche, P., Prados, M. (1995), “Removal of pesticides by use of ozone or hydrogen peroxide/ozone, Ozone Science & Environment”, 17, 657-672.
72.Lambert, D.Steven., Graham, D.N., Croll, T, Brian. (1996), “Degradation of selected herbicides in a lowland surface water by ozone and ozone-hydrogen peroxide”, Ozone Science & Engineering, 18, 251-269.
73.Carbonnier, F.V., C, Roche.P., Paillard, H. (1994), “Water Oxidation by ozone or ozone/hydrogen peroxide using the “Ozotest” or ”peroxotest” methods”, Ozone Science & Engineering, 16, 135-155.
74.Glaze, H.W., Kang, W.J. (1989), “Advanced Oxidation Processes. Description of a Kinetic Model for the Oxidation of Hazardous Materials in Aqueous Media with Ozone and Hydrogen Peroxide in a Semi-batch Reactor”, Ind. Eng. Chem. Res., 28, 1573-1580.
75.Glaze, H.W., Kang, W.J., Chapin, H.D. (1987), “The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation”, Ozone Sci. Eng., 9, 335–352.
76.Esplugas, S., Gimenez, Jaime., Contreras, S., Pascual, E., Rodriguez, M. (2002), “Comparison of different advanced oxidation processes for phenol degradation”, Water Research, 36, 1034-1042.
77.Mokrini, A., Ousse, D., Esplugas, S. (1997), “Oxidation of aromatic compounds with UV radiation/ozone/hydrogen peroxide”, Wat. Sci. Tech., Vol. 35, No. 4, 95-102,.
78.Trapido, M., Veressinina J., Munter, R. (1998), “Ozonation and AOP treatment of phenanthrene in aqueous solutions, Science & Engineering”, 16, 475-485.
79.Beltran, J.F., Ovejero, G.., Garcia-Araya, F.J. (1996), “Oxidation of Polynuclear Aromatic hydrocarbons in water. 2. UV radiation and ozonation in the Presence of UV radiation”.
80.Laity, J.L., Burstein, L.G., Appel. B.R. (1973), “Solvents theory and practice, American Chemistry Series, Washington”, 124, 95.
81.Kawaguchi, H. (1993), “Photooxidation of formic acid in aqueous solution in the presence of hydrogen peroxide, Chemosphere”, 26(11), 1965–1970.
82.Stefan, M.J., Hoy, A.R., Bolton, J.R. (1996), “Kinetics and Mechanism of the Degradation and Mineralizaiton of Acetone in Dilute Aqueous Solution Sensitized by the UV Photolysis of Hydrogen Peroxide”, Environ. Sci. Technol., 30, 2382-2390.
83.Garoma, T., Gurol, D, M. (2004), “Degradation of tert-Butyl Alcohol in Dilute Aqueous Solution by an O3/UV Process”, Environ. Sci. Technol., 38, 5246-5252.
84.Horspool, W.M. (1992), “A comprehensive treatment, Organic Photochemistry”.
85.Gao, M.T., Hirata, M., Takanashi, H., Hano, T. (2005), “Ozone mass transfer in a new gas–liquid contactor–Karman contactor, Separation and Purification Technology”, 42, 145-149
86.Wu, J.J., Masten, S.J.(2002), “Oxidation kinetics of phenolic and indolic compounds by ozone: applications to synthetic and real swine manure slurry”, Water Research, Vol. 36, 1513-1526.
87.Ruchti, G., Dunn, I.J., Bourne, J.R., von Stockar, U.(1985), “Practical guidelines for the determination of oxygen transfer coefficients (KLa) with the sulfite oxidation method”, Chem. Engng J., 30, 29-38.
88.Laity, J.L., Burstein, L.G., Appel. B.R. (1973), “Solvents theory and practice, American Chemical Society”, Washington, No. 124, p. 95.
89.Sullivan, D.E., Ph.D. Dissertation (1979), “Vanderbilt University”, Tennessee, USA.
90.Tomiyasu, H., Fukutomi, H., Gordon, G. (1985), “Kinetics and mechanism of ozone decomposition in basic aqueous solution”, Inorg. Chem, 24, 2962-2966.
91.Westerhoff, P., Song, R., Amy, G., Minear, R. (1997), “Applications of ozone decomposition models”, Ozone Science & Engineering, 19, 55-73.
92.Elovitz, M. S.; von Gunten, U. (1999), “Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept”, Ozone Science & Engineering, 21, 239-260.
93.Masten, S.J., Galbraith, J.S., Davies, S.H. (1996), “Oxidation of Trichlorobenzene Using Advanced Oxidaiton Processes, Ozone Science & Engineering”, 18, 535-548.
94.Hoigne, J., Bader, H. (1981), “Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water-I”, Water Res, 17, 173-183.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top