跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/05 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李國源
研究生(外文):Kuo-Yuan Lee
論文名稱:導流板與鰭片間距對分離式熱交換器熱傳導性能之影響
論文名稱(外文):The Heat Transfer Performance Effects of Flap and Clearance on Remote Heat Exchanger
指導教授:莊書豪莊書豪引用關係
指導教授(外文):Chuang Shu-Hao
學位類別:碩士
校院名稱:遠東技術學院
系所名稱:機械研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:73
中文關鍵詞:散熱模組鰭片熱管
外文關鍵詞:thermal module、fin、heat pipe
相關次數:
  • 被引用被引用:1
  • 點閱點閱:619
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
隨著科技的進步,電腦產品朝著輕、薄、短小且功能不斷增加,因而造成電腦所產生熱量相對增加。本文研究方法分別以數值模擬及實驗來探討準系統電腦中分離式散熱模組之散熱性能。分離式散熱模組之優點可使熱量迅速經由熱管傳送到散熱鰭片,並經風扇冷卻能有效地將熱量排出。本文數值分析所考慮參數為散熱鰭片間距、形狀及加裝導流板,並針對以上變數對散熱模組之散熱性能進行分析。而實驗方面係針對散熱模組熱管溫度分佈情況來探討其散熱性能。
本文所研究散熱模組形狀及間距參數組合共有A、B、C、D、E、F等六組散熱模組。其中A組散熱模組為型號P415之標準散熱模組,鰭片共43片;B組散熱模組為鰭片間距改變為12片(2.1mm)及29片(1.8mm);C組散熱模組為鰭片間距改變為10片(2.5mm)及29片(2.5mm);D組散熱模組為鰭片間距分別改變為15片(1.8mm)、16片(1.575mm)及12片(2.1mm):E組散熱模組鰭片數目與A組相同;E組散熱模組為在散熱鰭片面對風扇馬達之中間位置把原有每片鰭片尺寸面積切除300 (60㎜×5㎜),F組散熱模組為A組在其熱管四周添加導流板鰭片共43片(導流板與熱管之間距離為0.7mm)。
由本文數值分析所得各組結果與A組比較後發現,B、C、D組散熱模組之散熱效率大約降低1~2.8﹪,這是由於它們的散熱鰭片減少及間距改變之故。E組散熱模組及F散熱模組組溫度大約比A組降低0.2~0.6℃,其散熱效率則大約提升0.5~1.4﹪。
本文實驗方面針對A、B、C、D四組散熱模組量測其熱管的溫度分佈。由實驗結果發現熱管溫度分佈狀況以D組散熱模組較佳,溫度分佈較均勻,C組散熱模組次之,B組散熱模組最差。
Abstract
With the advancement of science and technology, computer becomes lighter, thinner and smaller, and is provided with more functions. This causes increase of the heat produced by a computer. Based on numerical simulation and experiment, this research probes into the performance of separated thermal module in barebones computer. The advantage of a separated thermal module lies in the fact that it can transmit heat through a heat pipe to fins and then discharge heat by a fan effectively. In the numerical analysis of this paper, the parameters such as the interval and shape of fins and the mounting of flap are considered, and analysis is made on the cooling performance of the modules in connection with these parameters. In the experiment, the performance is analyzed according to the temperature distribution of the modules.
According to the different combinations of shape and interval, the modules are divided into six groups: A, B, C, D, E, and F. Where, Group A consists of P415 standard thermal modules with 43 fins each; the fin interval of a module in Group B is changed to 12pieces (2.1mm) and 29 pieces (1.8mm); Group C, 10pieces (2.5mm) and 29pieces (2.5mm); Group D, 15pieces (1.8mm), 16 pieces (1.575mm) and 12pieces (2.1mm); the number of fins of a module in Group E is the same as that of a module in Group A, but a part of 300mm2 (60mm×5mm) is cut from each fin in the middle opposite to fan motor; a module in Group F differs from a module in Group A for it has 43 flaps around heat pipe (the space between flap and heat pipe is 0.7mm).
By comparing the result of numerical analysis of Group A with those of other groups, it is found that the cooling efficiency of Group B, C, and D is reduced by about 1~2.8%, because they have less fins and different intervals. The temperature of Group E and F is about 0.2~0.6℃ lower than that of Group A, and the cooling efficiency is improved by 0.5~1.4% approximately.
In the experiment of this research, the temperature distribution of the heat pipes of Groups A, B, C and D is measured. From the result of experiment, it is found that the temperature of heat pipes of the modules in Group D is distributed the most evenly; Group C, the second; and Group B, the worst.
目 錄
中文摘要.....................................................I
英文摘要...................................................III
誌謝........................................................V
目錄........................................................VI
表目錄....................................................IX
圖目錄......................................................X
符號說明..................................................XIII
第一章 緒論..........................................1
1.1前言................................................1
1.2發展趨勢............................................2
1.3文獻回顧............................................3
1.4研究目的與動機......................................5
1.5研究方法............................................5
第二章 熱管技術理論..........................................7
2.1熱管發展.............................................7
2.2熱管構造.............................................8
2.3工作原理.............................................9
2.4熱管使用上之限制....................................10
第三章 實驗方法與設備.......................................12
3.1實驗方法...........................................12
3.2實驗設備...........................................12
3.3實驗模型...........................................14
3.4實驗步驟...........................................15
第四章 數值分析.............................................16
4.1基本假設...........................................17
4.2網格系統...........................................18
4.3有限體積法.........................................20
4.4求解方法...........................................23
4.5紊流模式...........................................24
4.6收斂條件...........................................25
4.7數值模擬流程.......................................26
第五章 物理模型建構.........................................27
5.1物理模型建.........................................27
5.2散熱模組之設計與改良...............................27
第六章 結果與討論...........................................29
6.1網格測試...........................................29
6.2紅外線熱影像儀之實驗數據...........................30
6.3數值模擬結果與量測數據比較.........................30
6.4散熱模組數值模擬結果分析...........................31
第七章 結論與建議...........................................35
7.1結論...............................................35
7.2建議...............................................36
參考文獻....................................................37
參 考 文 獻
1王啟川,「電子散熱熱管理(上)」,冷凍與空調,45~58頁,2003
2.http://www.intel.com
3.Shuler, S.“Thermal management, understanding how to incorporate effective thermal strategies into overall portable electronic design for better performance” Materials and Design 21,pp.39-44,2000.
4.Zhang,H.Y.,Pinjala,D.,Navas,O.K.,Iyer,M.K.Chan,P.K.liu,X.P.,Hayashi,H.and Han,J.B.,“Development of thermal solutions for high performance laptop computers”,IEEE Inter Society Conference on Thermal Phenomena,pp.433-440,2002.
5.Gupta,A.and Upadhya,G.,”Optimization of Heat Pipe Wick Structures for of Low Wattage Electronics Cooling applications”,Advances in Electronic Packaging ASME,Vol.2,
pp.2129-2137,1999.
6.Rujano,J.R.,Cardenas,R.,Rahman,M.M.,Moreno,W.,“Developmen of a Thermal Enhancement of Desk Top Computer by Chassis Design Optimization”,IEEE Electronics Packaging Technology Conference,pp.60-64,2000.
7. Simons,R.E.,“Estimating Parallel Plate-Fin Heat Sink
Thermal Resistance,ElectronicsCooling,Vol.9,No.1,pp.8-9,2003
8. Eastman,G.Y.“The Hea Pipe”,Scientific American,Vol.218,
NO.12,pp.38-46,1968.
9. 庒駿、張紅,「熱管技術及其工程應用」,化學工程出版社,2004.
10.Faghri,A.“Heat Pipe Science and Technology”, Taylor and Francis, Bristol, 1995.
11.Kemme,J.E.,”High Performance Heat Pipes”Proc.1967,
Thermionic Conversion Specialist Conference, PaloAlto, California, Oct., 1967.
12.Levy,E.K.,“Theoretical Investigation of Heat Pipe Operating at Low Vapor Pressure”, J. Eng. Ind., Vol. 90, pp.547-552,
1968.
13.Kemme,J.E.,“UltimateHeat-PipePerformance”,IEEE Transaction on Electron Devices,Vol.16,pp.717-723,1969.
14.Udell K. S. “Heat Transfer in Porous Media considering Phase Change and Capillarity”, Int. J. Heat Transfer, Vol. 28, No.2, pp.485-498, 1985.

15.Flotherm Reference Manual,Flomerics Ltd,Surrey,U.K.
16.Patankar,S.V.and Spalding,D.B.,”A Calculation Procedure for Heat,Mass and Momentum Transfer in Tree-Dimensional Parabolic Flows”,Int.J.Heat Transfer, Vol.15,pp.1787-1806,1972.
17.Patankar,S.V.,“Numerical Heat transfer and Fluid Flow”,Hemishere Publishing Co.,New York,1980.
18.王啟川,「熱交換器設計(I)」,五南出版社,2003.
19.尤金龍,「各種間距之散熱模組鰭片對散熱性能影響分析」,碩士論文,國立中興大學機械工程研究所,2005.
20.Zahn,B.A.,”Evaluating Thermal Characterization Accuracy Using CFD codes-A package Level Bencehmark Study of IcePak andFlotherm”,Inter Society Conferenceon Thermal Phenomena,
pp.22-329,1998.
21.吳培立,「筆記型電腦散熱系統之研究」,碩士論文,國立成功大學工程科學所,2003.
22.林益弘,「準系統電腦散熱流場模擬與分析」,碩士論文,國立中興大學機械工程研究所,2004.
23.陳秋南,「側吹式散熱鰭片阻抗曲線之理論與實驗分析」,碩士論文,國立清華大學工程與系統科學系,2003.
24.劉矅瑋,「橢圓管板鰭式熱交換器之熱流特性分析」,碩士論文,遠東技術學院機械工程所,2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊