跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 14:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊男
研究生(外文):Chun Nan Wu
論文名稱:螺旋流動分析及高壓釜處理對MIM生胚性質的影響
論文名稱(外文):Spiral Fluidity Analysis and The Effect of Autoclave Process on MIM
指導教授:王振興王振興引用關係
指導教授(外文):Jenn Shing Wang
學位類別:碩士
校院名稱:遠東技術學院
系所名稱:機械研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:85
中文關鍵詞:金屬粉末射出成形螺旋模高壓釜
外文關鍵詞:SpiralAutoclaveMIM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
金屬粉末射出成形是一個連續式的製程,射料進入模具內,開模取出生胚,過程中的變化對射出參數的控制相當的重要,而後續的製程中又以脫脂為最關鍵的步驟,脫脂後黏結劑去除,所造成的膨脹以及空隙變化都會對後續製成造成影響。
第一部份研究改變射出速度以及羰基鐵粉添加60wt%水噴霧鐵粉,對射料流動性的影響,並切割分段觀察生胚微結構、脫脂缺陷和孔隙分佈,探討出最佳射出參數。
第二部份將脫脂後生胚包覆橡膠套,置入高壓釜,利用其高溫可軟化試片,同時產生壓力可將脫脂後試片生胚密度提高,探討不同粉末粒徑、溫度、固體含量、生胚大小有何影響。
羰基鐵粉生胚尺寸射出速度由13.8 cm3/sec到23 cm3/sec,流動長度增加25.26mm,熔接線長度增加2mm,23cm3/sec到32.2 cm3/sec流動長度增加5.90mm,熔接線減少0.16mm,由此可知射速跟流動性和熔接線不是呈正比,添加60wt%水噴霧粉生胚會降低射料流動性,在各種射速下添加60%水噴霧粉生胚尺寸皆小於羰基鐵粉。由螺旋生胚微結構顯示,第一段因保壓關係,填入較多的射料,生胚表面平坦,脫脂後孔隙較小,燒結後密度到達6.51g/cm3,而到第二段後,保壓效果降低,脫脂後孔隙多,燒結密度較第一段低,密度為6.22 g/cm3,到了第三段保壓已無效果且有流痕缺陷產生,燒結密度為6.12 g/cm3,第四段已無保壓效果,流痕缺陷也較第三段明顯,燒結密度為6.11 g/cm3,第五第六段已到了熔接線部分,裂縫及孔洞較大,而導致燒結密度較差,燒結密度只有5.68和4.53 g/cm3,由以上所述,模具尺寸較適合在熔接線產生之前,避免過長,以保證保壓效果,才可得到完整且均勻的生胚。
50vol%固體含量細鐵粉生胚脫脂率達到82%,70vol%固體含量細鐵黺生胚體脫脂率為79%,50vol%固體含量粗鐵粉生胚脫脂率達到90%,且脫脂速度比相同50vol%固體含量細鐵粉生胚快了12個小時。50vol%固體含量細鐵粉生胚脫脂後膨脹量為0.67%,70vol%固體含量細鐵粉生胚膨脹量為0.2%,50vol%固體含量粗鐵粉生胚脫脂後膨脹量為1.2%,由此可知脫脂速率與膨脹量跟固體含量,以及粉末粒徑有關係。
脫脂後生胚經高壓釜後,細鐵粉大生胚尺寸(ψ32mm)與小生胚尺寸(ψ16mm)脫脂後變形量與收縮量一樣,高壓釜溫度由150增加180℃效果也趨於相同,但小的粉末粒徑有較大的影響,當固體含量50vol%固體含量細鐵粉生胚,膨脹量0.7%左右而收縮量可以達到0.4%左右,60vol%固體含量細鐵粉生胚,膨脹量0.45%左右而收縮量可以達到0.25%左右,70vol%固體含量細鐵粉生胚,膨脹量0.2%左右而收縮量可以達到0.1%左右,其燒結密度均提高4%~5%,而其他固體含量粉末粒徑收縮量較低,而燒結密度提高1%。

關鍵字:金屬粉末射出成形、螺旋模、高壓釜
Abstract
Metal Injection Molding (MIM) is a continuous process. The feedstock is injected into the cavity of the mold, then to be a green sample after opening the mold. The injection parameter control is important in this process. Debinding is the key step by taking the binders out the green samples. The values of expansion and pore distribution influence the property of sintered samples.
This study is divided into two parts. The first one is to research the effects of injection speed and adding 60wt% atomized iron powder on the feedstock fluidity in the spiral mold. For the best injection parameters, the molded samples were then cut into six segments to study the microstructure, debinding defect and pore distribution.
The second part is to pack the solvent debinded sample more closely by autoclave process with high temperature and high isotropic pressure. The effects of particle size, temperature, solid content and sample size on the properties of the autoclaved samples were studied.
For carbonyl iron powder sample, the length of flow and weld line increases 25.26mm and 2mm, separately, as injection speed increasing from 13.8cm3/sec to 23cm3/sec. The length of flow increases 5.90mm and the weld line length decreases 0.16mm as injection speed increasing from 23cm3/sec to 32.2cm3/sec. The relations between injection speed, weld line and flow length are not always positive. The feedstock fluidity is decreased by adding 60wt% atomized iron powder.
On the observation the microstructure of the spiral green specimens, the surface of the first section is smoother than that of the second, because of inserting more feedstock by holding pressure in molding process. By the same reason the density of the former is 6.51g/cm3 after sintering and is larger than 6.22g/cm3 of the later. At the third and fourth section, holes and flow mark defects are more obviously than the first and second section, because holding pressure is too low to make the compact more densely. The density of the third one is 6.12g/cm3 after sintering and is larger than 6.11g/cm3 of the fourth one. As the flow injecting to the fifth and sixth section, the weld line makes the pore size relatively big. It is the reason that the sintered densities of two finally sections to be 5.68g/cm3 and 4.53g/cm3, separately.
The weight losses of solvent debinding process are 82% and 79% for the samples with 50vol% solid content and 70vol% solid content carbonyl iron powder. The shrinkage of solvent debinding process are 0.67%, 0.2%, and 1.2% for the samples with 50vol% solid content carbonyl iron powder, 70vol% solid content carbonyl iron powder, and 50vol% atomized powder. The solvent debinding time of the former is faster 12 hour than that of the later. There are some relations between particle size, maximum weight loss, solid content and shrinkage after debinding and autoclave process.
The values of deformation and shrinkage are nearly the same for the ψ32mm and ψ16mm samples with carbonyl iron powder as increasing autoclave temperature from 150℃ to 180℃. The sintering density of the sample with 70vol% carbonyl iron powder is increasing 4%~5%, which is larger than 1% of the specimens with 50vol% and 60vol% carbonyl iron powder contented.

Key word:MIM,Spiral,Autoclave
總目錄
中文摘要…….……………….………………………………………………………I
英文摘要……………….……………………………………………………………III
誌謝……………….……………..……………………………….………………..…V
目錄………………………………………………………………………………….VI
表目錄………………….………..…………………………………….……………..X
圖目錄…………………….………..……………………………………………..…XI


目 錄
第一章 緒論…………………………………………..……………………….…1
1-1 金屬粉末射出成形簡介…………………………………………..……….....1
1-2金屬粉末射出成形流程………………………………………………………1
1-3原料的選擇……………………………………………………………………2
1-3-1金屬粉的選擇……………………………………………………………2
1-3-2高分子的選擇……………………………………………………………5
1-4 MIM的優缺點…………………………………………………………………7
1-5實驗動機與目的…………………………………………………….…………8
第二章 理論文獻……………………………………………..……..…....……..9
2-1粉末性質的影響…………………………………...……..…..………....……..9
2-1-1粉末形狀影響……………………………………………………..……...9
2-1-2粉末粒徑的影響……………………………………………………..…...9
2-2射料的流變行為…………………………………...……..…..…..…………..10
2-3成形缺陷之形成與成因…………………………….…….……..…………...10

2-3-1 縮孔………………………………...……...………….…....…………...13
2-3-2 流痕…………………………….…….....…….…….……..….………...13
2-3-3 熔接線……………………….……..….……...……….……..….……...13
2-4保壓大小及時間之影響………………………….…….……...…………..…14
2-5 脫脂……………………..………………………..….…..….…….…....…….14
2-5-1溶劑脫脂方法………………...……………………………..…………..14
2-5-2溶劑脫脂機構……………………………………………...……………18
2-5-3熱脫脂方法……………………..…………………………………….…20
2-5-4熱脫脂機構…………….………….…………………………………….22
2-6 CIP理論…………………………………………………………….………..23
2-7燒結理論……………………………………………….……………..………24
第三章 實驗方法…………………………………..…………….…….………26
3-1 實驗流程…………………………………………………………….………26
3-2原料…………………………………………………….……………….……26
3-2-1 金屬粉末……………………………………………………….………26
3-2-2 黏結劑…………………………………………………………….……31
3-3緊敲密度的量測………………………………………………………….….31
3-4 安息角的量測………………………………………...………………….….31
3-5 混練…………………………………………………………………….……33
3-5-1 黏結劑的混練…………………………………………………….……33
3-5-2 粉末與黏結劑的混練…………………………………………….……33
3-6 成形…………………………………………………………………….……33
3-7 溶劑脫脂………………………………………………………………….…35
3-8高壓釜…………………………………….…………………………….……35
3-9熱脫脂…..……………………………………………………………………35
3-10 燒結………………………..………………………….……………………40
3-11 性質量測與觀察………………………………………...…………………40
3-11-1螺旋模流動長度計算…………………………………………………40
3-11-2螺旋模生胚分段方式………………..………………..………………40
3-11-3重量損失與脫脂速率…………………………............………………40
3-11-4 微結構的觀察…………………………...........………………………41
3-11-5 孔隙大小的量測…………………………………..….………………41
3-11-6 燒結密度量測………...………………………………………………44
第四章 結果與討論…………………………………………...………………45
4-1粗細粉末混合比例對緊敲密度的影響……………………………………..45
4-2 安息角…………………………………………………….…………………45
4-3螺旋模分析…………………………………………………..………………45
4-3-1射出速度對細鐵粉射料流動性的影響……………………..…………45
4-3-2 添加60wt%粗粉對射料流動性的影響………………….…………….47
4-3-3 螺旋模生胚脫脂前後微結構分析…………………………………….50
4-3-4 添加60wt%粗鐵粉螺旋模生胚脫脂前後微結構分析………………..50
4-3-5 添加60wt%粗鐵粉生胚脫脂後孔隙分析……………………………..50
4-3-6 螺旋模試片之燒結密度分析………………………………………….57
4-4脫脂…………………………………………………………….…………….57
4-4-1粉末粒徑和固體含量對溶劑脫脂的影響…...........................................57
4-4-2固體含量和粉體粒徑分佈對溶劑脫脂後收縮量的影響…….…….…58
4-4-3溶劑脫脂後連通孔隙分析…….………………………….……………58
4-5高壓釜處理對脫脂生胚變形量的影響…………………………………….64
4-5-1粉體粒徑對收縮量的影響………………………………….………….64
4-5-2生胚大小對變形量的影響……………………………………………..64
4-5-3溫度對收縮量的影響…………………………………………………..65
4-6 射料熱重分析..........................................65
4-7燒結…………………………………………………………………..………..65
4-7-1 密度分析……………………………………………………………….66
4-8 高壓釜作用對燒結後試片硬度影響……………………………………..….66
第五章 結論……………………………………….…………………………….81
第六章 參考文獻………………………………………………………………82

表目錄
Table 1-1 Compare MIM with other processes.…………………..…………….….…3
Table 1-2 The effect of powder characteristic on MIM process……………….…..…6
Table 3-1 Properties of water atomized iron powder………………………..………28
Table 3-2 Characteristics of binder used in this study……………………….………32
Table 3-3 Standards of Injection Machine….………..………………………………37
Table 3-4 Properties of n-hexane…..……………………………………….……..…37
Table 3-5 Temperature and pressure are expressed correspondingly……….….....…39
Table 4-1 Flowability of carbonyl iron powder feedstocks………..……………...…48
Table 4-2 Flowability of mixed carbonyl and atomized iron powder feedstocks……48
Table 4-3 The densities of six sections of spiral sintered specimens……………......59
Table 4-4 The effect solid content and particle size on length change after solvent debinding……………………………………………….…………………63

圖目錄
Fig 1-1 A schematic diagram of the processing steps and equipments involved in
powder injection molding……...……………………………………………..4
Fig 2-1 Schematic expression for different flow behavior of fluid………………….11
Fig 2-2 Effect of solid content by feedstock viscosity and the best solid content
choose for range…………………………………………...…....…….…….12
Fig 2-3 A schematic classification of the six key debinding processes based on either
thermal or solvent approaches…………………..……………...…….……..15
Fig 2-4 Experimental setup of the extraction debinding by condensedsolvent…...…17
Fig 2-5 Stage of solvent debinding (a) Stage of intermediate (b) Stage of final….…19
Fig 2-6 A collection of possible defects in a PIM compact that might be noted after
debinding………………….…………………………………………………21
Fig 2-7 The schematics of binder distributions at the (a) initial (b) intermediate and
(c) final stages of straight thermal debinding………………..………………25
Fig 3-1 Flow chart of experimental process…………….…..……………………….27
Fig 3-2 Morphology of (a) water atomized iron(b) carbonyl iron powder(c) carbonyl
nickel powder(d) copper powder………….…………………...…….……..29
Fig 3-3 The particle size distribution of carbonyl iron powders……...............……..30
Fig.3-4 Repose angle of powder. ………………………………………...………….34
Fig 3-5 Flow chart of binder blending.………………………………………………36
Fig 3-6 Flow chart of powder and binder blending………………………...………..36
Fig 3-7 Spiral mold of dimensions….……………………………………….………38
Fig 3-8 Phase diagram of water………………………………………………...……39
Fig 3-9 The chat of calculate flow length………...…………………………….........42
Fig 3-10 A schematic for cutted 6 sample…………..……………………….………42
Fig 3-11 Sample chamber for automated capillary flow poromete……......……...…43
Fig 4-1 Effect of carbonyl iron powder content on the tap density..…………...…....46
Fig 4-2 Effect of carbonyl iron powder content on the repose angle………..……....46
Fig 4-3 The weld line for spiral sample……………………………………………..49
Fig 4-4 Surface microstructure of spiral mould specimens with carbonyl iron powder (a)first part(b)second part(c)third part (d)fourth (e) fifth part (f)sixth part....51
Fig 4-5 Surface microstructure of spiral mould specimens with debinding carbonyl iron powder (a)first part(b)second part(c)third part(d)fourth (e) fifth part (f)sixth part………………………………………………………….….…..52
Fig 4-6 Surface microstructure of spiral mould specimens with carbonyl iron and atomized iron powder (a)first part(b)second part(c)third part(d)fourth part(e) Fifth part (f)sixth part…………………………………………...…...……..53
Fig 4-7 Surface microstructure of spiral mould specimens with debinding carbonyl and atomized iron powder(a)first part(b)second part(c)third part(d)fourth part(e)fifth part(f)sixth part…………….………………..……………....…54
Fig 4-8 The pore size distribution of the solvent debinded green part at first part.….55
Fig 4-9 The pore size distribution of the solvent debinded green part at second part.55
Fig 4-10 The pore size distribution of the solvent debinded green part at third part..56
Fig 4-11 The pore size distribution of the solvent debinded green part at fourth part
……………………………………………………………………………...56
Fig 4-12 The effect of solid content on the green samples with carbonyl iron iron powder in the solven debinding process……………………...…………….60
Fig 4-13 The effect of solid content on the green samples mixed with carbonyl and atomized iron powder in the solven debinding process…………...............60
Fig 4-14 The effect of the solven debinding time on the weight loss for the 50vol%
green samples with carbonyl iron powder.…………………..……………..61
Fig 4-15 Sectional microstructure of the debinding green samples with (a) carbonyl
iron powder(b) carbonyl and atomize iron powder, and (c) atomized iron powder………………………………………………………………….…62
Fig 4-16 The poresize distribution of the samples with 50vol% carbonyl iron powders
…………………………………………………………………………….67
Fig 4-17 The poresize distribution of the samples with 50vol% carbonyl and atomized iron powders. ……………………………………………………………..67
Fig 4-18 The poresize distribution of the samples with 50vol% atomized iron powder
iron powders……………………………………..………………………..68
Fig 4-19 The poresize distribution of the samples with 60vol% carbonyl iron powders
…………………………………………………………………………….68
Fig 4-20 The poresize distribution of the samples with 60vol% carbonyl and atomized iron powders...………………………...…………………………………...69
Fig 4-21 The poresize distribution of the samples with 70vol% carbonyl iron powders
………………………………………………………………………….....69
Fig 4-22 The poresize distribution of the samples with 70vol% carbonyl and atomized
iron powders………………..………………………….….………………..70
Fig 4-23 The shrinkage of Φ32mm and Φ16mm samples with 50vol% carbonyl iron powder after debinding and autoclave processes…………………….70
Fig 4-24 The shrinkage of Φ32mm and Φ16mm samples with 60vol% carbonyl iron powder after debinding and autoclave processes…………………………..71
Fig 4-25 The shrinkage of Φ32mm and Φ16mm samples with 70vol% carbonyl iron powder after debinding and autoclave processes ………………………...71
Fig 4-26 The shrinkage of Φ32mm and Φ16mm samples with 50vol% carbonyl and
atomized powder iron after debinding and autoclave processes………….72
Fig 4-27 The shrinkage of Φ32mm and Φ16mm samples with 60vol% carbonyl and
atomized iron powder after debinding and autoclave processes …………..72
Fig 4-28 The shrinkage of Φ32mm and Φ16mm samples with 70vol% carbonyl and
atomized iron powder after debinding and autoclave processes………….73
Fig 4-29 The shrinkage of Φ32mm and Φ16mm samples with 50vol% atomized iron
powder after debinding and autoclave processes…………………………..73
Fig 4-30 The effect of autoclave on the difference between expansion and shrinkage
for the 50vol% samples…………………………………………………...74
Fig 4-31 The effect of autoclave on the difference between expansion and shrinkage
for the 60vol% samples…………………………………………………….74
Fig 4-32 The effect of autoclave on the difference between expansion and shrinkage
for the 70vol% samples…………………………………………………….75
Fig.4-33 TGA of 50vol% feedstock…………………………………...…………….75
Fig.4-34 TGA of 60vol% feedstock…………………………………...…………….76
Fig.4-35 TGA of 70vol% feedstock…………………………………...…………….76
Fig 4-36 The microstructure of the debinding samples with(a)carbonyl iron powder
(b)carbonyl and atomized iron powder (c) atomized powder iron……..…77
Fig 4-37 Microstructure of the autoclaved samples with carbonyl iron powder.....…77
Fig 4-38 The effect of autoclaved on densification for 50vol% samples...……….....78
Fig 4-39 The effect of autoclaved on densification for 60vol% samples....................78
Fig 4-40 The effect of autoclaved on densification for 70vol% samples..……....…..79
Fig.4-41 Effect of autoclave on hardness for 50vol% samples……………...………79
Fig.4-42 Microstructure of the sintered with carbonyl iron powder……………...…80
Fig.4-43 Microstructure of sintered after the autoclaved samples with carbonyl iron powder…………………………………………………………………….80
第六章 參考文獻
1 M. T. Martyn , D. A. Issitt , B. Haworth and P. J. James
,“Injection molding of powders” , Powder Metallurgy, Vol.31,
No.2,106-112 (1988)
2 B. C. Mutsuddy,“Oxidative Removal of Organic Binders from Injection
Molding Ceramics”, Elsevior Applied Science, London, 397-408 (1986)
3 R. M. German‚“Powder Injection Molding”, Metal Powder Industries
Federation, Princeton, New Jersey, 25-46,281-319,352-392 (1990)
4 R. M. German and A. Bose,“Injection Molding of Metals and
Ceramics”. Metal Powder Industries Federation, Princeton, New
Jersey, 175-184 (1997)
5 B. C. Mutsuddy and R. G. Ford,“Ceramic Injection Molding”, Chapman
and Hall, London, 1-26, 175-218, 245-262,283 (1995)
6 B. C. Mutsuddy,“Equipment Selection for Injection Molding”,
Ceramic in Bulletin, 168, 10, 1796-1802 (1982)

7 D. Whittaker,“Technical Advances, Advances, Applications, and
Business Outlook for Metal Injection Molding”, Powder Material, 35
[1]8-11 (1992)
8 R. Billietm,“Netshape Full Density P/M Parts by Injection Molding
in Powder Metallurgy for Full Density Products”, New Jersey, 497-
510 (1987)
9 R. E. Wiech,“Manufacture of Parts from Paticulate Material”, U.S.
Patent 4, 197, 118 (1980)
10 Wiech,“Method for Removing Binder from a Green Body”, U. S.
Patent
4, 404, 166 (1983)
11 R. E. Wiech,“Method for Forming Shaped Metal Alloy Parts from
Metal or Compou Nd Particles of Metal Alloy Components and
Components”, U. S. Patent 4, 445, 936 (1984)
12 R. E. Wiech,“Method and Means for Removing Binder from a Green
Body”, U.S. Patent 4, 305, 756 (1986)
13 R. E. Wiech,“Method for Rapidly Removing Binder form a Green
Body”, U.S. Patent 4, 661, 315 (1986)
14 周村裕幸 著、賴明雄 譯,“金屬粉末射出成型製程”,粉末冶金
會刊,第22 卷,第1 期,30-40,民國86 年2 月。
15 江明智,“金屬粉末射出成形製程(MIM)—金屬成形技術之新領域
”,材料與社會,第80 期,106-109,民國82 年8 月。
16 陳文信、邱思議、林兆焄、賴明雄、鄭建財和謝景文,“ MIM 的原料
結合劑和微細金屬粉末”,工業材料,132 期,pp.91-96,民國86 年
12 月。
17 紀國章,“粉末射出成形之原料特性”,材料與社會,第55 期,60-62,民國80 年
7 月。
18 K. C. Hsu , C. C. Lin and G. M. Lo , “Effect of Wax Composition on
Injection Molding of 304L Stainless Steel Powder”, Powder
Metallurgy, Vol.37, No.4, 272-276 (1994)

19 陳文信,“金屬粉末射出成型技術”,機械工業,148-158,民國85年1 月。
20 K. S. Hwang and T. H. Tsou ,“Thermal Debinding of Powder Injection
Molded Parts:Observations and Mechanisms”, Metallurgical
Transactions, Vol.23, 2775-2782 (1992)
21 R. M. German,“Optimization of The Powder-Binder Mixture for Powder
I njection Molding”, Metal Powder Industrial Federation,
Princeton, New Jersey, 51-65 (1989)
22 K. C. Hsu and P. C. Tsai, “A Statistical Analysis of The Effect
of a Mixture Component on The Rhology of Alumina Feedstocks”,
Materials Transactions, Vol.27, 399-408 (1996)
23 M. J. Edirisinghe and J. R. G. Evans,“Properties of Ceramics
Injection Molding Formulations-part-1MeltRheology”, Journal Of
Materials Science, Vol.22, 269-277 (1987)
24 B. K. L. Ograsso, A Bose, B. J. Carpenter, C. I. Chung, K. F.
hens, D. Lee, S. T. Lin, C. X. Liu, R. M German, R. M. Messler,
P. F. Murley, B. Carbonyl O. Rhee , C. M. Sierra and J. Warren,
“Injection Molding of Iron With olyethylene Wax”, Journal of
Powder Metal, Vol.25, No.4, 337-348 (1989)
25 M. Wright, L. J. Hughes, and S. H. Gressel, “Rheological
Characterization of Feedstocks for Metal Injection”, Journal Of
Materials Science, Vol.3, No.2, 300-306 (1994)
26 林士傑,“金屬粉末射出成型製程之脫脂方法介紹”,材料與社
會,第55 期,63~67,民國80 年7 月。
27 S. T. Lin , R. M. German ,“Extraction Debinding of Injection
Molded parts by Condensed Solvent”, Powder Metallurgy
International, Vol.21, No.5, 19-24 (1989)
28 S. W. Kim , H. W. Lee , H. Song , B. H. Kim , “Pore Structure
Evolution During Solvent Extraction and Wicking”, Ceramic
International, Vol.22,7-14 (1996)

29 K. S. Hwang , H. K. Lin , S. C. Lee ,“Thermal , Solvent and Vacuum
Debinding Mechanisms of PIM Compacts”, Mater and Manufacturing
Processes, Vol.12, No.4, 593-608 (1997)
30 K. S. Hwang , Y. M. Hsien ,“Comparative Study of Pore Structure
Evolution Durning Solvent and Thermal Debinding of Powder
Injection Molded Parts”, Metallurgical and Materials
Transactions, Vol.27,

, 245-253 (1996)
31 K. S. Hwang , T. H. Tsou ,“Thermal Debinding of Powder Injection
Molded Parts Observations and Mechanisms”, Metallurgical
Transactions , Vol.23, 2775-2782 (1992)
32 R. M. German , “Theory of Thermal Debinding”, The International
Journal of Powder Metallurgy, Vol.15, 237-245 (1989)
33 M. Trunec and J. Cihlár ,“Effect of Activated Carbon Bed on Binder
Removel from Ceramic Injection Moldings”, Journal Of American
Ceramics Society, Vol.84, No.3, 675-677 (2001)
34 C. W. Finn ,“Vacuum Binder Removal and Collection”, Journal
Of Materials Science, Vol.45, No.2, 127-132 (1991)
35 P. D. Hammond and J. R. G. Evans , “The Use of Overpressure in
Thermolytic Debinding of Moulded Ceramic Bodies”, Journal of the
European Ceramic Society, Vol.15, 117-125 (1995)
36 R. Vetter,M. J. Sanders , I. Majewska-Glabus and L. Z. Zhuang ,
“Wicking-debinding in Powder Injection Molding”, The International
Journal of Powder Metallurgy, Vol.30, No.1, 115-124 (1994)
37 H. M. Shaw and M. J. Edirisinghe ,“Porosity Development During
Removal of Organic Vehicle from Ceramic Injection Moludings”,
Journal of the European Ceramic Society, Vol.13, 135-142 (1994)
38 李益民和李云平, “金屬注射成形原理與應用”中南大學出版社,
89-90 , 153, 107-108,民國93 年。
39 林錦鴻、陳維方、鐘明吉和林正輝編譯,“熱力學”全華科技圖書,
3-7,B-2,民國90 年6 月。
40 Tadamoto Sakai, “State of the Art of Inject Ion Molding of High- Perform ance Ceramics”, Advances in Polymer Techonlogy, Vol.11,
No.1,53-67 (1991~1992)
41 J. G. Zhang, M. J. Edirisinghe and J. R. G. Evans, “A Catalogue of
Ceramic Injection M olding defects and Their Causes”, Industrial
Geramics, Vol.9, No22, 72-82 (1989)
42. 李宏仁,“粒徑對金屬射出成形製程中溶劑脫之行為之影響", 國
立台灣大學, 材料科學與工程學研究所, 碩士論文, 46-87, 1998
年6 月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top