跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖雪江
研究生(外文):Hsueh-Chiang Liao
論文名稱:2,5-二甲氧基-4-乙硫基苯乙胺(2C-T-2)對小鼠免疫系統影響的特性分析
論文名稱(外文):Characterization the effects of 2C-T-2, a phenethylamine derivative, on the immune system of mice
指導教授:周秀慧周秀慧引用關係
指導教授(外文):Shiu-Huey Chou
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生命科學系碩士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:精神活化藥物苯乙胺免疫力2C-T-2
外文關鍵詞:phenethylamine2C-T-2psychoactive drugsimmunity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
2,5-二甲氧基-4-乙硫基苯乙胺(2, 5 – dimethoxy – 4 – ethylthiophenethylamine, 2C-T-2)為苯環上官能基改變之苯乙胺(phenethylamine)衍生物,為一種精神活化藥物(psychoactive drugs);精神活化藥物服用後可影響腦部功能,造成服用者知覺、心情、認知與行為改變,長期濫用會影響多項生理功能。先前研究中,小鼠單次口服2C-T-2會導致小鼠脾臟細胞在活化狀況下nitric oxide(NO)產生的下降,NO與免疫系統的防禦力有關,但有關2C-T-2對免疫生理活性的影響尚無相關文獻報導。本研究的目的是以小鼠灌食模式,評估單次或多次2C-T-2餵食對小鼠免疫活性的影響,並進一步探討在2C-T-2對免疫系統的神經內分泌調控的機制。研究結果顯示,小鼠口服2C-T-2卅分鐘後即可在血液中被偵測,約6小時在血液中便達到殘餘量的最低點,2C-T-2同時可促進血漿中皮質固酮(conrticosterone)的濃度增加。在單次餵食2C-T-2的結果顯示,2C-T-2的餵食會抑制周邊血中總白血球的數目,同時也抑制白血球吞噬的活性,而2C-T-2也會抑制脾臟B與T淋巴球在活化狀態下細胞增生與NO釋放,並在餵食後2小時呈現最大抑制的反應;另外2C-T-2也顯著抑制LPS刺激分泌的細胞激素IL-1β、IL-6與TNF-α分泌量與Con A刺激分泌的細胞激素IFN-γ、IL-4與IL-10的分泌量,但2C-T-2顯著促進TGF-β1與IL-2分泌增加。在多次餵食實驗結果顯示,2C-T-2不會顯著改變周邊血總白血球數目,對脾臟B與T淋巴球在活化狀態下細胞增生僅呈現些微抑制現象,而在多次餵食下IL-1β、IL-6、TNF-α、IL-4與IL-2分泌量皆會下降,但對IFN-γ與IL-10的分泌量並無影響。在探討2C-T-2所造成免疫活性抑制機制的結果顯示,將不同劑量的2C-T-2與巨噬細胞株、脾臟初代細胞與純化出T細胞進行體外共同培養的實驗結果顯示,2C-T-2之免疫抑制作用並非藥物直接作用細胞所導致;接著在餵食藥物前30分鐘腹腔施打交感神經抑制劑(nadolol)與興奮劑(epinephrine),發現NO釋放的抑制現象可因為藥物的施打而減弱。綜合以上所得, 2C-T-2攝食可造成小鼠免疫活性的抑制,而此抑制作用與神經內分泌的調控有關。
2C-T-2 (2,5–dimethoxy–4–ethylthio- phenethylamine), a psychoactive drug, is a ring-substituted phenethylamine derivative that exerts psychological effects including changes in mood, cognition, and behavior. It had been reported that psychoactive drugs caused the health problems if there were abused intake. The previously studies indicated that oral intake 2C-T-2 suppressed the nitric oxide production of mitogen-stiumated splenocytes in mice. However, little information is available concerning its bioactivity and immunomodulatory activity. In this study, the metabolic kinetic and immunomodulatory effects of 2C-T2 after single or repeated oral intake are examined and characterized used the mice animal model. In addition, the neuroendocrine-mediated mechanism(s) of 2C-T-2-induced immunosuppression was also examined. Results indicated that the level of 2C-T-2 in the peripheral blood was firstly detected at 30 minutes after intake, and 6 hours later, the level of 2C-T-2 was metabolic clear and less than detectable amount. In parallel, 2C-T-2 oral intake also increased the level of corticosterone in blood plasma. The results of single intake 2C-T-2 on immune activities indicated that 2C-T-2 induced the decrease the distribution of T, B, and NK cell populations in peripheral blood. And the ability of phagocytosis in leukocytes was suppressed significantly after 2C-T-2 oral intake 6 hours. 2C-T-2 also induced the suppression of mitogen-stimulated proliferation and nitric oxide in spleen and thymus. In addition, the production of IL-1β, IL-6, TNF-α, IFN-γ, IL-4, and IL-10 cytokines from LPS or Con A-stimulated splenocytes were significantly decreased after 2C-T-2 oral intake. However, 2C-T-2 intake significantly increased the IL-2 and TGF-β1 production. Repeated 2C-T-2 intake induced the immunosuppression on production of nitric oxide, IL-1β, IL-6, TNF-α, IL-4, IL-10, and TGF-β1, but no change on leukocytes subpopulation number, proliferation and production of IL-2 and IFN-γ. Furthermore, in this study, we observed that in vitro exposure to 2C-T-2 did not alter LPS-stimulated nitric oxide production. This data indicate that the ability of 2C-T-2 to suppress the production of nitric oxide and cytokine production is not due to a direct action on immune cells. Interestingly, administrated nodolol, a β-adrenoceptor blockade, or epinephrine attenuated the decrease in nitric oxide production induced by 2C-T-2 oral intake. In summary, these data demonstrate that 2C-T-2 intake induce the suppression effect on immune activities of mice. However, further studies are needed to elucidate the exact mechanisms that underlie 2C-T-2 induced suppression of nitric oxide and cytokine production.
中文摘要………………………………………………………………...…………..1
英文摘要……..………………………………………………………….…………..2
第一章 研究背景
第一節 精神活化藥物(psychoactive drugs)………………………..…….3
第二節 2C-T-2與2C衍生物.…………….…………………….……………6
第三節 精神活化藥物的藥性作用………………………………………...…11
第四節 免疫與神經內分泌的交互作用…………………………………...…12
第二章 研究動機與目的………….……..…….........................15
第三章 實驗材料與方法
第一節 實驗設計…………….………………………....……….........…...16
第二節 實驗材料…………….………………………...………….......…...…19
第三節 實驗藥品………….………………………..…………........…...….21
第四節 實驗試劑......................................... …...….22
第五節 實驗儀器..........................................…...….26
第六節 實驗方法..........................................…...….28
第四章 結果
第一節 2C-T-2代謝與藥物動力學……………..……………..……..…........34
第二節 單次餵食2C-T-2之小鼠整體免疫活性的評估……..……...……....35
第三節多次餵食2C-T-2之小鼠活體免疫活性的分析.…………………........38
第四節 2C-T-2抑制NO產生作用機制探討.............................41
第五章 討論...................................................45
第六章 總結...................................................51
參考文獻…....................................................52
周秀慧,柳如宗,林立川,許又仁,邱鈺智,林震煌。新興濫用藥物2C-T-2的藥理性質以及用氣相層析質譜法鑑定尿液中的代謝成分。化學。2005;63:87-94

吳俊學,2002。線上濃縮毛細管微胞電泳層析法對老鼠血清中皮質固酮之定性定量分析。師範大學化學所碩士論文。

柳如宗。防範新型毒品犯罪---安非他命類毒品之濫用趨勢與對策。憲兵學術半年刊。2002;4-18。

Ashok BK, Tamizchelvi T, Letterio JJ. Function of cytokine within the TGF-β superfamily as determined from transgenic and gene knockout studies in mice. Curr Mol Med. 2002; 2(3): 303- 327

Ben-Sasson SZ, Kagan J. Antigen-induced proliferation of murine T-lymphocytes in vitro. II. The effect of different macrophage populations on the antigen-induced proliferative response. J Immunol Methods. 1981; 41(3):321-31.

Black MD, Simmonds J, Senyah Y, Wettstein JG. Neonatal nitric oxide synthase inhibition: social interaction deficits in adulthood and reversal by antipsychotic drugs. Neuropharmacology. 2002; 42: 414-420.

de Boer D, Bosman I. A new trend in drugs-of-abuse; the 2C-series of phenethylamine designer drugs. Pharm World Sci. 2004 Apr;26(2):110-3.

Bogdan C, Nathan C. Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10.
Ann N Y Acad Sci. 1993 Jun 23;685:713-39.

Braun U, Shulgin AT, Braun G. Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylene- dioxyamphetamine). J Pharm Sci. 1980; 69: 192-195.

Chiu YC, Chou SH, Liu JT, Lin CH. The bioactivity of 2,5-dimethoxy-4-ethylthiophenthylamine(2C-T-2)and its detection in rat urine by capillary electrophoresis combined with an online sample concentration technique. J Chromatogr B Analyt Technol Biomed Life Sci. 2004; 811: 127-133.

Chou SH, Kojic LD, Messingham KN, Cunnic JE. Characterization of the effect of 2-deoxy-D-glucose (2-DG) on the immune system.
Brain Behav Immun. 1996 Dec;10(4):399-416.

Chou SH, Kojic LD, Cunnick JE. Evidence for the involvement of catecholamines in the 2-DG-induced immunomodulatory deffects in spleen. Brain Behav Immun. 1997; 11: 79-93

Connor TJ, Dennedy MC, Harkin A, Kelly JP. Methylenedioxymethamphetamine- induced suppression of interleukin-1β and tumour necrosis factor-α is not mediated by serotonin. Eur J Pharmacol. 2001; 418: 147-152.

Connor TJ., Kelly JP., McGee M., Leonard BE., Methylenedioxymethamphetamine (MDMA;”Ecstasy”) suppresses IL-1β and TNF-α secretion following an in vivo lipopolysaccharide challenge. Life Sci. 2002; 67: 1601-1612.

Connor TJ, Harkin A, Kelly JP. Methylenedioxymethamphetamine(MDMA,‘Ecstasy’)increases LPS-induced IL-10 production via β-adrenoceptor activation. Eur Cytokine Netw. 2003; 4(Suppl.): 47

Connor TJ. Methylenedioxymethamphetamine(MDMA,‘Ecstasy’):a stressor on the immune system. Immunology. 2004; 111: 357-367.

Connor TJ, Harkin A, Kelly JP. Methylenedioxymethamphetamine suppresses production of the proinflammatory cytokine tumor necrosis factor-α independent of a β-adrenoceptor-mediated increase in interleukin-10. J Pharmacol Exp Ther. 2005; 312: 134-143.

Cunnick JE, Lysle DT, Kucinski BJ, Rabin BS. Evidence that shock-induced immune suppression is mediated by adrenal hormone and peripheral β-adrenergic receptor. Pharmacol Biochem Behav. 1990; 36: 645-651.

Dubovsky SL and Thomas M. Beyond specificity: effects of serotonin and serotonergic treatments on psychobiological dysfunction. J Psychosom Res. 1995; 39: 429-444.

Elenkov IJ, Papanicolaou DA, Wilder RL, Chrousos GP. Modulation effects of glucorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proc Assoc Am Physicians. 1996; 108: 374-381.

Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000 Dec;52(4):595-638.

Felipe A, Long-hai Z, Martin K, Richard L, Epinephrine promotes pulmonary angiitis:evidence for a β1-adrenoreceptor-mediated mechanism. J Physiol Lung Cell Mol Physiol. 2003; 285: L232-L239.

Gagnon L, Lacroix F, Chan J, Buttar HS. In vitro effect of “designer” amphetamines on human peripheral blood mononuclear leukocytes proliferation and on natural killer cell activity. Toxicol Lett. 1992; 63: 319-319.

Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, Knowles RG. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem. 1997; 272(8): 4959-4963.

Gerlier D and Thomasset N. Use of MTT colorimetric assay to measure cell activation. J Immunol Methods. 1986; 94(1-2): 57-63.

Gibb J, Johnson M, Hanson G. Neurochemical basis of neurotoxicity. Neurotoxicology. 1990; 11: 317-321.

Glaser R, Lafuse WP, Bpnneau RH, Atkinson B, Kiecolt-Glaser JK. Stress-associated modulation pf proto-oncogen expression in human peripheral blood leukocytes. Behav Neurosci. 2003; 107: 525-529.

Glaser R, Pearson GR, Bonneau RH, Esterling BA, Atkinson C, Kiecolt-Glaser JK. Stress and the memory T-cell response to the Epstein-Barr virus in healthy medical students. Health Psychol. 1993; 12(6):435-442.

Gonzalo A, Carrasco, Louis D, Van de Kar. Neuroendocrine pharmacology of stress. Eur J Pharmacol. 2003; 463: 235-272.

Habrdova V, Peters FT, Theobald DS, Maurer HH. Screening for and validated quantification of phenethylamine-type designer drugs and mescaline in human blood plasma by gas chromatography/mass spectrometry. J Mass Spectrom. 2005 Jun;40(6):785-95.

House R, Thomas P, Bhargava H. Comparison of immune functional parameters following in vitro exposure to natural and synthetic amphetamines. Immunopharmacol Immunotoxicol. 1994; 16(1): 1-21.

House RV, Thomas PT, Bhargava HN. Selective modulation of immune function resulting from in vitro exposure to methylenedioxymethamphetamine (Ecstasy). Toxicology. 1995; 96: 59-69.

Kanamori T, Inoue H, Iwata Y, Ohmae Y, Kishi T. In vivo metabolism of 4-bromo-2,5-dimethoxyphenethylamine(2C-B)in the rat:identification of urinary metabolites. J Anal Toxicol. 2002; 26(2); 61-66.

Kubera M, Filip M, Basta-Kaim A, Nowak E, Budziszewska B, Tetich M, Holan V, Korzeniak B, Przegalinski E, The effect of amphetamine sensitization on mouse immunoreactivity. J Physiol Pharmacol. 2002; 53: 233-242.

Le Gros G, Ben-Sasson SZ, Sender R, Finkelman FD, Paul WE. Generation of interleukin 4 (IL-4) -producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med. 1990; 172: 921-929.

Lin LC, Liu JT, Chou SH, Lin CH. Identification of 2,5-dimethoxy-4-ethylthioph-enethylamine and its metabolites in the urine of rats by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004; 12991: 1-7.

Lisbon. Report on the Risk Assessment of 2C-T-2 in the Framework of the Joint Action on New Synthetic Drugs, 2003; 1-7.

McCardle K, Luebbers S, Carter JD, Croft RJ and Stough C. Chronic MDMA (ecstasy) use, cognition and mood. Psychopharmacology (Berl). 2004; 173: 434-439.

Nash JF Jr, Meltzer HY, Gudelsky GA. Elevation of serum prolactin and corticosterone concentrations in the rat after the administration of 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther. 1988 Jun;245(3):873-9.

Nichols DE. Medicinal chemistry and structure-activity relationships, in Cho, AK., and Segal, DS.,(eds) amphetamine and its analogs, Academic Press, San Diego, 1994, 3-41

Nunez-Iglesias MJ, Castro-Bolano C, Pereiro-Raposo MD, Riveiro P, Sancheez-Sebio P, Mayan-Santos JM, Rey- Mendez M, Freire-Garabal M. Effects of amphetamine on cell mediated immune response in mice. Life Sci. 1996; 58: PL 29-33.

Pezzone MA, Rush KA, Kusnecov AW, Wood PG, Rabin BS. Corticosterone-independent alteration of lymphocyte mitogenic function by amphetamine. Brain Behav Immun. 1992; 6: 293-299.

Savino W, Dardenne M. Immune-neuroendocrine interactions. Immunol Today. 1995; 16(7): 318-322.

Scott P, Kaufmann SHE. The role of T-cell subsets and cytokines in the regulation of infection. Immunol Today. 1991; 12: 346-348.

Shulgin A. A Chemical Love Story, PiHKAL, Fifth Ed, 2000; 577.

Stuehr DJ, Nathan CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989; 169(5): 1543-1555.

Theobald DS, Staack RF, Puetz M, Maurer HH. New designer drug 2,5-dimethoxy-4-ethylthio-beta-phenethylamine (2C-T-2): studies on its metabolism and toxicological detection in rat urine using gas chromatography/mass spectrometry. J Mass Spectrom. 2005 Sep; 40(9):1157-72.

Thomsen LL, Scott JM, Topley P, Knowles RG, Keerie AJ, Frend AJ. Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: studies with 1400W, a novel inhibitor. Cancer Res. 1997; 57(15): 3300-3304.

Tsai CC, Liu JT, Shu YR, Chan PH, Lin CH. Optimization of the separation and on-line sample concentration of phenethylamine designer drugs with capillary electrophoresis-fluorescence detection. J Chromatogr A. 2006 Jan 6;1101(1-2):319-23.

Zhou JF, Zhou YH, Zhang L, Chen HH, Cai D. 3,4-methylenedioxymethamphetamine (MDMA) abuse markedly inhibits acetylcholinesterase activity and induces severe oxidative damage and liperoxidative damage. Biomed Environ Sci. 2003; 16(1): 53-61.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top