吳佩儀。1998 柑橘潰瘍病菌recA 基因表現的調控。天主教輔仁大學生命科學研究所碩士論文。
邱子玲。2004 自然環境及市售納豆產品中Bacillus分離株之特性分析及種類鑑定。天主教輔仁大學生命科學研究所碩士論文。施英隆、范宜琮。2001 納豆~神奇之保健食品。生物資源生物技術第四卷第四期,37-45。
Adinarayana, K., and P. Ellaiah. 2002. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J Pharm Pharm Sci 5:272-8.
Arai, A., E. Kawachi, M. Hata, M. Ogura, and T. Tanaka. 2003. Inhibition of Bacillus subtilis aprE expression by lincomycin at the posttranscriptional level through inhibition of ppGpp synthesis. J Biochem (Tokyo) 134:691-7.
Arai, A., E. Kawachi, M. Hata, M. Ogura, and T. Tanaka. 2003. Inhibition of Bacillus subtilis aprE expression by lincomycin at the posttranscriptional level through inhibition of ppGpp synthesis. J Biochem (Tokyo) 134:691-7.
Baev, M. V., D. Baev, A. J. Radek, and J. W. Campbell. 2006. Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of sugars, alcohols, and organic acids with transcriptional microarrays. Appl Microbiol Biotechnol 71:310-6.
Baev, M. V., D. Baev, A. Jansco Radek, and J. W. Campbell. 2006. Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of amino acids, peptides, and nucleotides with transcriptional microarrays. Appl Microbiol Biotechnol.
Bai, U., I. Mandic-Mulec, and I. Smith. 1993. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev 7:139-48.
Carmona, M., M. J. Rodriguez, O. Martinez-Costa, and V. De Lorenzo. 2000. In vivo and in vitro effects of (p)ppGpp on the sigma(54) promoter Pu of the TOL plasmid of Pseudomonas putida. J Bacteriol 182:4711-8.
Carter, H. L., 3rd, and C. P. Moran, Jr. 1986. New RNA polymerase sigma factor under spo0 control in Bacillus subtilis. Proc Natl Acad Sci U S A 83:9438-42.
Cases, I., and V. de Lorenzo. 1998. Expression systems and physiological control of promoter activity in bacteria. Curr Opin Microbiol 1:303-10.
Cases, I., and V. de Lorenzo. 2000. Genetic evidence of distinct physiological regulation mechanisms in the sigma(54) Pu promoter of Pseudomonas putida. J Bacteriol 182:956-60.
Chang, C. T., M. H. Fan, F. C. Kuo, and H. Y. Sung. 2000. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem 48:3210-6.
Chiang, C. J., H. C. Chen, Y. P. Chao, and J. T. Tzen. 2005. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. J Agric Food Chem 53:4799-804.
Choi, N. S., K. H. Yoo, K. S. Yoon, P. J. Maeng, and S. H. Kim. 2004. Nano-scale proteomics approach using two-dimensional fibrin zymography combined with fluorescent SYPRO ruby dye. J Biochem Mol Biol 37:298-303.
Dahl, M. K., T. Msadek, F. Kunst, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J Bacteriol 173:2539-47.
Dahl, M. K., T. Msadek, F. Kunst, and G. Rapoport. 1992. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem 267:14509-14.
Dartois, V., M. Debarbouille, F. Kunst, and G. Rapoport. 1998. Characterization of a novel member of the DegS-DegU regulon affected by salt stress in Bacillus subtilis. J Bacteriol 180:1855-61.
Doi, R. H. 1982. Multiple RNA polymerase holoenzymes exert transcriptional specificity in Bacillus subtilis. Arch Biochem Biophys 214:772-81.
Farrell, M. J., and S. E. Finkel. 2003. The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment. J Bacteriol 185:7044-52.
Fayek, K. I., and S. T. El-Sayed. 1980. Fibrinolytic activity of an enzyme produced by Bacillus subtilis. Z Ernahrungswiss 19:21-3.
Fayek, K. I., and S. T. El-Sayed. 1980. Purification and properties of a fibrinolytic enzyme from Bacillus subtilis. Z Allg Mikrobiol 20:375-82.
Fayek, K. I., and S. T. El-Sayed. 1980. Some properties of two purified fibinolytic enzymes from Bacillus subtilis and B. polymyxa. Z Allg Mikrobiol 20:383-7.
Fujita, M., K. Hong, Y. Ito, R. Fujii, K. Kariya, and S. Nishimuro. 1995. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biol Pharm Bull 18:1387-91.
Fujita, M., K. Nomura, K. Hong, Y. Ito, A. Asada, and S. Nishimuro. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197:1340-7.
Guo, J., Y. Sun, and Y. Su. 2002. [Preparation of natto and its function in health care]. Zhong Yao Cai 25:61-4.
Haldenwang, W. G., and R. Losick. 1980. Novel RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci U S A 77:7000-4.
Haldenwang, W. G., N. Lang, and R. Losick. 1981. A sporulation-induced sigma-like regulatory protein from B. subtilis. Cell 23:615-24.
Hambraeus, G., K. Karhumaa, and B. Rutberg. 2002. A 5' stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Microbiology 148:1795-803.
Hambraeus, G., M. Persson, and B. Rutberg. 2000. The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis. Microbiology 146 Pt 12:3051-9.
Harwood, Colin R. 1989. Bacillus. Plenum Press, New York..
Hata, M., M. Ogura, and T. Tanaka. 2001. Involvement of stringent factor RelA in expression of the alkaline protease gene aprE in Bacillus subtilis. J Bacteriol 183:4648-51.
Hata, M., M. Ogura, and T. Tanaka. 2001. Involvement of stringent factor RelA in expression of the alkaline protease gene aprE in Bacillus subtilis. J Bacteriol 183:4648-51.
Hirsch, M., and T. Elliott. 2002. Role of ppGpp in rpoS stationary-phase regulation in Escherichia coli. J Bacteriol 184:5077-87.
Igo, M., M. Lampe, C. Ray, W. Schafer, C. P. Moran, Jr., and R. Losick. 1987. Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J Bacteriol 169:3464-9.
Ikemura, H., and M. Inouye. 1988. In vitro processing of pro-subtilisin produced in Escherichia coli. J Biol Chem 263:12959-63.
Ikemura, H., H. Takagi, and M. Inouye. 1987. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J Biol Chem 262:7859-64.
Jan, J., F. Valle, F. Bolivar, and E. Merino. 2000. Characterization of the 5' subtilisin (aprE) regulatory region from Bacillus subtilis. FEMS Microbiol Lett 183:9-14.
Kallio, P. T., J. E. Fagelson, J. A. Hoch, and M. A. Strauch. 1991. The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J Biol Chem 266:13411-7.
Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62:2482-8.
Ko, J. H., J. P. Yan, L. Zhu, and Y. P. Qi. 2004. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp Biochem Physiol C Toxicol Pharmacol 137:65-74.
Kunst, F., and G. Rapoport. 1995. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177:2403-7.
Kunst, F., T. Msadek, J. Bignon, and G. Rapoport. 1994. The DegS/DegU and ComP/ComA two-component systems are part of a network controlling degradative enzyme synthesis and competence in Bacillus subtilis. Res Microbiol 145:393-402.
Liu, B. Y., and H. Y. Song. 2002. [Molecular cloning and expression of Nattokinase gene in Bacillus subtilis]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34:338-40.
Losick, R., and J. Pero. 1981. Cascades of Sigma factors. Cell 25:582-4.
Msadek, T., F. Kunst, A. Klier, and G. Rapoport. 1991. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J Bacteriol 173:2366-77.
Msadek, T., F. Kunst, D. Henner, A. Klier, G. Rapoport, and R. Dedonder. 1990. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J Bacteriol 172:824-34.
Mukai, K., M. Kawata, and T. Tanaka. 1990. Isolation and phosphorylation of the Bacillus subtilis degS and degU gene products. J Biol Chem 265:20000-6.
Mukai, K., M. Kawata-Mukai, and T. Tanaka. 1992. Stabilization of phosphorylated Bacillus subtilis DegU by DegR. J Bacteriol 174:7954-62.
Ogura, M., A. Matsuzawa, H. Yoshikawa, and T. Tanaka. 2004. Bacillus subtilis SalA (YbaL) negatively regulates expression of scoC, which encodes the repressor for the alkaline exoprotease gene, aprE. J Bacteriol 186:3056-64.
Ogura, M., K. Shimane, K. Asai, N. Ogasawara, and T. Tanaka. 2003. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol Microbiol 49:1685-97.
Ogura, M., K. Shimane, K. Asai, N. Ogasawara, and T. Tanaka. 2003. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol Microbiol 49:1685-97.
Olmos, J., R. de Anda, E. Ferrari, F. Bolivar, and F. Valle. 1997. Effects of the sinR and degU32 (Hy) mutations on the regulation of the aprE gene in Bacillus subtilis. Mol Gen Genet 253:562-7.
Olmos, J., V. Bolanos, S. Causey, E. Ferrari, F. Bollvar, and F. Valle. 1996. A functional Spo0A is required for maximal aprE expression in Bacillus subtilis. FEBS Lett 381:29-31.
Palva, I. 1982. Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. Gene 19:81-7.
Park, S. S., S. L. Wong, L. F. Wang, and R. H. Doi. 1989. Bacillus subtilis subtilisin gene (aprE) is expressed from a sigma A (sigma 43) promoter in vitro and in vivo. J Bacteriol 171:2657-65.
Peng, Y., Q. Huang, R. H. Zhang, and Y. Z. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol B Biochem Mol Biol 134:45-52.
Peng, Y., X. J. Yang, L. Xiao, and Y. Z. Zhang. 2004. Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis. Res Microbiol 155:167-73.
Powell, B. S., and D. L. Court. 1998. Control of ftsZ expression, cell division, and glutamine metabolism in Luria-Bertani medium by the alarmone ppGpp in Escherichia coli. J Bacteriol 180:1053-62.
Prakasham, R. S., S. Rao Ch, and P. N. Sarma. 2006. Green gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour Technol 97:1449-54.
Sanchez, A., and J. Olmos. 2004. Bacillus subtilis transcriptional regulators interaction. Biotechnol Lett 26:403-7.
Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1-17.
Shimane, K., and M. Ogura. 2004. Mutational analysis of the helix-turn-helix region of Bacillus subtilis response regulator DegU, and identification of cis-acting sequences for DegU in the aprE and comK promoters. J Biochem (Tokyo) 136:387-97.
Stephens, M. A., S. A. Ortlepp, J. F. Ollington, and D. J. McConnell. 1984. Nucleotide sequence of the 5' region of the Bacillus licheniformis alpha-amylase gene: comparison with the B. amyloliquefaciens gene. J Bacteriol 158:369-72.
Stragier, P., and R. Losick. 1990. Cascades of sigma factors revisited. Mol Microbiol 4:1801-6.
Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43:1110-1.
Sumi, H., H. Hamada, K. Nakanishi, and H. Hiratani. 1990. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol 84:139-43.
Tai, M. W., and B. V. Sweet. 2006. Nattokinase for prevention of thrombosis. Am J Health Syst Pharm 63:1121-3.
Takano, A., A. Hirata, K. Ogasawara, N. Sagara, Y. Inomata, T. Kawaji, and H. Tanihara. 2006. Posterior vitreous detachment induced by nattokinase (subtilisin NAT): a novel enzyme for pharmacologic vitreolysis. Invest Ophthalmol Vis Sci 47:2075-9.
Tover, A., E. L. Ojangu, and M. Kivisaar. 2001. Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. Microbiology 147:2149-56.
Urano, T., H. Ihara, K. Umemura, Y. Suzuki, M. Oike, S. Akita, Y. Tsukamoto, I. Suzuki, and A. Takada. 2001. The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis Cleaves and inactivates plasminogen activator inhibitor type 1. J Biol Chem 276:24690-6.
Wang, C. T., B. P. Ji, B. Li, R. Nout, P. L. Li, H. Ji, and L. F. Chen. 2006. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J Ind Microbiol Biotechnol.
Wiggs, J. L., M. Z. Gilman, and M. J. Chamberlin. 1981. Heterogeneity of RNA polymerase in Bacillus subtilis: evidence for an additional sigma factor in vegetative cells. Proc Natl Acad Sci U S A 78:2762-6.
Wong, S. L., and R. H. Doi. 1984. Utilization of a Bacillus subtilis sigma 37 promoter by Escherichia coli RNA polymerase in vivo. J Biol Chem 259:9762-7.
Wong, S. L., C. W. Price, D. S. Goldfarb, and R. H. Doi. 1984. The subtilisin E gene of Bacillus subtilis is transcribed from a sigma 37 promoter in vivo. Proc Natl Acad Sci U S A 81:1184-8.
Zhao, K., M. Liu, and R. R. Burgess. 2005. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo. J Biol Chem 280:17758-68.
Zheng, Z. L., Z. Y. Zuo, Z. G. Liu, K. C. Tsai, A. F. Liu, and G. L. Zou. 2005. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto. A novel nucleophilic catalytic mechanism for nattokinase. J Mol Graph Model 23:373-80.