跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 02:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃绍哲
研究生(外文):Shao Jhe Huang
論文名稱:CeRu2塊材與奈米微粒之超導與磁性研究
論文名稱(外文):The Study of Superconductivity and Magnetic Properties in CeRu2 Bulk and Nanoparticles
指導教授:陳洋元
指導教授(外文):Y.Y.Chen
學位類別:碩士
校院名稱:輔仁大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:61
中文關鍵詞:CeRu2奈米微粒第二類超導體雙能隙康斗效應
外文關鍵詞:CeRu2Kondo effecttwo gap modelType Ⅱ superconductorNanaparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討CeRu2從塊材至奈米微粒的超導與磁性變化。CeRu2塊材在利用弧光放電法製作的時候,經XRD實驗後發現莫耳比Ce:Ru=1:1.75,在融熔後並不會有Ru雜質。CeRu2塊材在經過電阻、磁性及比熱的量測後,可以得知其為第二類超導體,超導轉變溫度約在6.2 K。
利用BCS模型及雙能隙(two gap)的模型去模擬塊材比熱,發現CeRu2塊材超導的能隙比較接近雙能隙的形式,其大小能隙分別為1.05 meV及0.725 meV,而比例各佔84 %及16 %。
當CeRu2從塊材進入奈米微粒時,從比熱觀察到超導的現象隨尺寸減小而減弱。康斗效應(Kondo effect)在塊材時並無觀察到,在尺寸小到奈米尺度後,C/T對T2關係圖在低溫部分則可以明顯的看出康斗效應造成的現象。從康斗模型模擬比熱的結果發現樣品尺寸減小Ce3+所佔的比例增加,而康斗溫度(Kondo temperature)往高溫偏移。
In this thesis, we study the variations of superconductivity and magnetic properties of CeRu2 with the size changed from bulk to nanaparticles. The CeRu2 samples were prepared by arc melting. The XRD measurements comfirmed that there is no Ru impurity if the samples were prepared by molar ratio Ce:Ru=1:1.75. CeRu2 is confirmed to be Type Ⅱ superconductor and TC=6.2 K by resistivity, magnetism, and specific heat measurements.
We utilize the BCS model and the two gap model to fit CeRu2 specific heat data and discover that superconductivity energy gap of CeRu2 is relatively close to that predicted by the two gap model. The two values of the gap are 1.05 meV and 0.725 meV with probabilities of 84 % and 16 % respectively.
Through specific heat measurements of CeRu2, it is observed that the superconductivity of CeRu2 weakens when reduced from bulk to nanoparticles. From the C/T to T2 graph, the Kondo effect cannot be observed in the bulk but can be observed in the nanoparticles. Further, the fits of the specific heat curves using the Kondo model indicate that the reduction of sample size accounts for the increase of the Ce3+ proportion in the sample with a shift of TK to higher temperature.
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 Ⅷ
第一章 導論
1.1 CeRu2 簡介 1
1.2超導體 簡介 1
1.3 超導的微觀理論 7
1.4 重費米子(Heavy Fermion) 8
1.5 康斗效應(Kondo effect) 9
1.6 雙能隙(Two gap) 10
第二章 基本原理
2.1 低溫比熱原理 11
2.1.1 晶格比熱 11
2.1.2 電子比熱 12
2.2 超導體的比熱 12


第三章 樣品製作與量測
3.1 樣品製作 15
3.1.1 弧光放電法(Arc melting)製作CeRu2塊材 15
3.1.2 準分子雷射濺鍍(Excimer Laser Ablation)製作奈米微粒18
3.2 XRD(X-Ray Distribution)量測 22
3.3 樣品物性量測 24
3.3.1 比熱(Specific heat)量測 24
3.3.2 SQUID 磁性量測 29
3.3.3 PPMS 電阻量測 31
第四章 實驗結果與討論
4.1 XRD 實驗結果 32
4.2電阻量測結果 40
4.3 磁性量測結果 43
4.4 比熱量測結果 49
第五章 結論 59
參考文獻 60
[1] S.B.Roy, A.K.Pradhan, and P.Chaddah, “Study of magnetic relaxation in the C15 superconductor CeRu2”, Supercond. Sci. Technol. 7, 602-605 (1994).
[2] R. R. Joseph, K. A. Gschneidner, and D. C. Koskimaki, “Low-Temperature Heat Capacity of LaRu2, CeRu2, and CeRu2-xPtx”, Phys. Rev. B 6, 3286-3296 (1972).
[3] A. D. Huxiey, C. Paulsent, and O. Laborde, “Flux pinning, specific heat and magnetic properties of the laves phase superconductor CeRu2”, J. Phys.: Condens. Matter 5, 7709-7718 (1993).
[4] 何建民, 低溫.超導.磁浮 (台灣書店, 台北, 1996).
[5] Y.Y.Chen, Y.D.Yao, and S.S.Hsiao, “Specific-heat of nanocrystalline palladium”, Phys. Rev. B 52, 9364-9369 (1995).
[6] C. Kittel, Introduction to Solid State Physics (Wiley, United States of America, 1996).
[7] H.Suhl, B.T.Matthias, and L.R.Walker, ”Bardeen-Cooper-Schrieffer Theory of Superconductivity in the Case of Overlapping Bands”, Phys. Rev. Lett. 3, 552-554 (1959).
[8] S. B. Roy, “CeRu2 and ZrV2: two interesting C15 Laves-phase superconductors” , Philosoph. Mag. B 65, 1435-1444 (1992).
[9] C. P. Sun, J. Y. Lin, and S. Mollah, ”Magnetic field dependence of low-temperature specific heat of spinel oxide superconductor LiTi2O4”, Phys. Rev. B 70, 054519 1-8 (2004).
[10] 洪大軒, “二釕化鈰奈米微粒之超導電性、比熱及磁性研究”, 天主教輔仁大學物理學系研究所碩士論文, 65-72 (2004).
[11] M. Hedo, Y. Inada, E. Yamamoto, and Y. Haga, “Superconducting Properties of CeRu2”, J. of Phys. Soc. of Jp. 67, 276-279 (1998).

[12] T. Kiss, F. Kanetaka, and T. Yokoya, “Photoemission Spectroscopic Evidence of Gap Anisotropy in an f-Electron Superconductor”, Phys. Rev. Lett. 94, 057001 1-4 (2005).
[13] M.Jarrell, “Inhibition of Strong-Coupling Superconductivity by Magnetic Impurities:A Quantum Monte Carlo Study”, Phys. Rev. Lett. 61, 2612-2615 (1988).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top