跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃伯鈞
研究生(外文):Po-Jim Huang
論文名稱:奈米銀抗菌膜之研發
論文名稱(外文):Development of Antimicrobial Film Incorporated with Silver Nanoparticles
指導教授:陳政雄陳政雄引用關係
指導教授(外文):Shaun C. Chen
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:160
中文關鍵詞:奈米銀粒子抗菌包材架橋劑表面改質傅立葉紅外線光譜掃描式電子顯微鏡
外文關鍵詞:silver nanoparticlesantimicrobial filmlinkersurface modificationinfra-red spectroscopyscanning electron microscope
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用架橋方式 (crosslinking) 將奈米銀粒子架接於包材表面,以製成抗菌包材。由於架橋將奈米銀粒子固定於膜表面,使奈米銀粒子可充分與食品接觸,有效提升抑菌效果。研究中先進行包材表面改質 (surface modification) 處理,增加低密度聚乙烯膜 (low density polyethylene film,LDPE) 表面極性官能基的數量,提高其對極性物質親和性 (affinity),繼而利用胜肽 (peptide) 當作架橋劑 (crosslinker),架接奈米銀粒子於經改質的 LDPE 膜表面,製成抗菌膜。研究中顯示丙二醇能有效控制部份奈米銀粒子之粒徑分佈於 30-100 nm,所配製成奈米銀粒子 (10 ppm)/ 丙二醇溶液即可有效抑制 E. coli 菌群的生長。由紅外線光譜儀 (FT-IR) 測定奈米銀粒子之吸收波峰為 418 cm-1 波數範圍。利用 FT-IR 測定以Double-UV lamp/ O3/ TiO2 針對 LDPE 膜進行膜改質處理,發現經改質後其含氧官能基 (–C=O, 1650-1870 cm-1) 之吸收波峰增加的趨勢更為明顯,顯示利用雙紫外線燈管進行膜改質,具有更佳的改質效果,亦可減少改質時間。奈米銀抗菌膜經傅立葉紅外線光譜儀檢測,並與已知的奈米銀粒子之遠紅外線吸收波峰加以對照,最後用掃描式電子顯微鏡 (SEM) 觀察,確定奈米銀抗菌膜製備完成。含 10 ppm 奈米銀粒子之奈米銀抗菌膜,能有效抑制 Escherichai col及Bacillus substilis 菌群的生長。在耐久試驗中,奈米銀抗菌膜經三次重覆使用後,仍能以接觸形式達到抑制微生物生長的效果。本研究結果,奈米銀抗菌膜能有效抑制微生物的生長,並能提供長效性的抑菌效果與耐久性,運用於食品包裝,有效維持食品的品質、延長儲藏期限。
Construction of an antimicrobial film using silver nanoparticles linked on packaging film was completed in this study. Study initiated from surface modification on polyolefin films using a UV/TiO2/O3 method to introduce polar functional groups on surface, that leaded to increase affinity to polar substance on LDPE surface. Silver nanoparticles were prepared in aqueous propylene glycol solution to maintain particle size ranging 30–100 nm, and A 10–mer peptide, used as the linker, was then applied to incorporate silver nanoparticles with LDPE to construct an antimicrobial film. Determination of silver nanoparticles linked on film was then achieved by FT–IR and SEM (scanning electron microscopy). Results indicated that surface modification using Double–UV lamp/TiO2/O3 process was beneficial to greater efficiency and shorter process duration compared to single UV lamp set-up. IR absorbance at 1650–1870 cm-1 (–C=O) and 418 cm-1 were observed for the identities of the polar group and silver nanoparticles on LDPE, respectively. Silver nanoparticles (10 ppm) linked on LDPE showed antimicrobial capacity against Escherichai col and Bacillus substilis, and the antimicrobial activities lasted to up to three times usage. Conclusively, silver nanoparticles linked antimicrobial film shows to inhibit microbial growth and is beneficial to multiple times use.
中文摘要 ................................................Ⅰ
英文摘要 ................................................Ⅱ
謝誌 ....................................................Ⅲ
目錄.....................................................Ⅳ
圖目錄 ..................................................Ⅵ
表目錄...................................................Ⅶ

第一章 前言 ..............................................1

第二章 文獻回顧 ...........................................3
一、 活性包裝 ..........................................3
二、 活性包裝技術 ......................................7
(一) 釋放包裝技術 ......................................7
(二) 吸附包裝技術 ......................................15
(三) 脫氧包裝技術 ......................................17
(四) 抗菌包裝技術 ......................................19
三、 膜改質技術 ........................................35
(一) 紫外光/臭氧/二氧化鈦之表面改質技術 ...................36
(二) UV/O3作用機制 .....................................37
(三) 表面改質鑑定 ......................................41
(四) 二氧化鈦的應用 ....................................47
四、 奈米銀粒子之簡介 ..................................50
(一) 奈米銀粒子理化特性 ................................50
(二) 奈米銀粒子之製備 ..................................56
(三) 奈米銀粒子之抑菌機制 ..............................60
(四) 奈米銀粒子在食品工業之應用 .........................65

第三章 材料與方法 .........................................67
一、 試驗材料 .........................................67
(一) 化學藥品 .........................................67
(二) 塑膠膜樣品 .......................................67
(三) 臭氧製造機 .......................................67
(四) 反應箱 ...........................................68
(五) UV燈 .............................................68
(六) 其他 .............................................68
(七) 菌種及培養基 ......................................68
二、 分析儀器 .........................................69
三、 試驗設計 .........................................70
四、 試驗方法 .........................................71
(一) 化學還原法製備奈米銀粒子 ...........................71
(二) 奈米銀粒子粒徑控制處理 .............................74
(三) 奈米銀粒子的FT-IR測定 .............................77
(四) 安定劑種類對奈米銀粒子抑菌效果之影響 .................79
(五) 表面改質處理 ......................................81
(六) 表面改質膜樣品之分析 ...............................85
(七) 架橋劑之設計 ......................................85
(八) 奈米銀粒子抗菌膜的製備 .............................87
(九) 奈米銀粒子抗菌膜之分析 .............................89
(十) 奈米銀粒子抗菌膜之抑菌實驗 ..........................92

第四章 結果與討論 ..........................................96
一、 奈米銀粒子製備 .....................................96
(一) 化學還原法製備對奈米銀粒子粒徑的影響 ..................96
(二) 安定劑對奈米銀粒子粒徑的影響 .........................100
(三) 奈米銀粒子的FT-IR測定 ...............................105
(四) 安定劑對奈米銀粒子抑菌活性的影響 ......................107
二、 雙管紫外光/臭氧/二氧化鈦對塑膠膜表面結構的影響 ..........114
(一) 雙管紫外光對表面改質效果的影響 ........................115
1. 低密度聚乙烯膜 ......................................115
2. 高密度聚乙烯膜 ......................................119
3. 聚丙烯膜 ...........................................122
(二) 表面改質時間對膜載體結構的影響 ........................125
三、 奈米銀粒子抗菌膜的製備 ...............................127
(一) 架橋劑與改質膜載體之結合 .............................130
(二) 奈米銀抗菌膜表面結構之分析 ...........................135
四、 奈米銀粒子抗菌膜之抑菌性及耐久性評估 ..................138
(一) Escherichai coli抑菌評估 ...........................138
(二) Bacillus substilis抑菌評估 .........................143
(三) 空氣落菌數之抑菌評估 .................................145

第五章 結論 ................................................148

第六章 參考文獻 .............................................149

表目錄

頁次
表一、包裝系統的機能性要求 ....................................5
表二、活性包裝之物理及化學特性 .................................6
表三、食品包裝上應用之釋放劑 ...................................8
表四、吸附性活性包裝之種類 ....................................16
表五、應用於包裝材料中抗菌劑的種類 .............................22
表六、抗菌劑的作用機制 ........................................23
表七、固定化抗菌劑之抗菌性評估方式 .............................24
表八、LLDPE膜經臭氧處理後之氧氣通透率 ..........................46
表九、奈米粒子的製備方法 ......................................58
表十、金屬離子對抑制Salmonella typhi 所需之最小濃度 ............61
表十一、奈米銀粒子與ㄧ般抗生素之殺菌機制比較 ....................64

圖目錄

頁次
圖一、抗菌包裝中活性物質的釋放情形 .............................9
圖二、食品包裝系統中活性物質之釋放機制 .........................10
圖三、添加乙醇於調氣包裝對好氣性微生物生長之影響 ................14
圖四、固定化酵素脫氧膜去除液態食品中氧氣之機制 ..................18
圖五、奈米銀粒子與介面活性多孔聚合物嵌接之機制 ..................30
圖六、多層活性抗菌 PEI 網狀膜結構示意圖 ........................31
圖七、LBL 奈米銀多層膜之架構圖 ................................32
圖八、奈米銀抗菌膜製備由Oleic acid 與 Oleylamine 穩定奈米銀粒子粒 徑 ....33
圖九、二氧化鈦促進活性氧分子生成之假設機制 ......................38
圖十、LLDPE膜經臭氧處理後之FT-IR圖譜 ..........................39
圖十一、光分解臭氧反應機制 ....................................40
圖十二、PP與PE膜經UV/O3處理後contact angle的改變 ..............42
圖十三、PS膜經表面改質後contact angle 之改變 ..................43
圖十四、PS經表面改質後之IR圖譜 ................................44
圖十五、TiO2光觸媒之反應機制...................................48
圖十六、相對濕度對二氧化鈦造成famotidine顏色消失的影響 ...........49
圖十七、穿透式電子顯微鏡下觀察奈米銀粒子 .........................52
圖十八、奈米銀粒子的濃度對E. coli菌群 (107 CFU/ml) 的抑制效果 ....53
圖十九、奈米銀粒子的濃度對抑制E. coli 菌群生長的影響 ..............54
圖二十、奈米銀粒子 (20 ppm) 對抑制不同接菌量的E. coli 菌群生長之影響 ....55
圖二十一、乳化劑分子在水中形成的聚集結構 .........................59
圖二十二、掃描式電子顯微鏡下觀察奈米銀粒子對E. coli 細胞的影響......62
圖二十三、穿透式電子顯微鏡下觀察E. coli細胞受50 ppm 奈米銀粒子 作用1小時後之情況 .........................................................63
圖二十四、實驗流程架構圖 .......................................70
圖二十五、奈米銀粒子的製備流程 ..................................73
圖二十六、奈米銀粒子混合溶液之配製 ..............................76
圖二十七、利用FT-IR分析奈米銀粒子實驗流程 .......................78
圖二十八、安定劑對奈米銀粒子抑菌效果影響實驗流程 ..................80
圖二十九、表面改質所使用之反應器 ................................83
圖三十、表面改質處理之實驗流程 ..................................84
圖三十一、架橋劑形成網狀結構固定奈米銀粒子之概念圖 .................86
圖三十二、奈米銀粒子抗菌膜之製備流程 .............................88
圖三十三、動態雷射光散射粒徑分析儀之架構概述 ......................91
圖三十四、Escherichai coli及Bacillus substilits 抑菌評估之實驗流程 ....94
圖三十五、空氣落菌數抑菌評估之實驗流程 ...........................95
圖三十六、硝酸銀 (104 ppm) /丙二醇溶液經化學還原法製備奈米銀粒子之粒徑分佈 ..........................................................98
圖三十七、硝酸銀 (103 ppm) /丙二醇溶液經化學還原法製備奈米銀粒子之粒徑分佈 ..........................................................99
圖三十八、奈米銀粒子 (104 ppm) 添加於 (A) 丙二醇及 (B) 去離子水溶液過濾後 (0.45 μm) 之影像照片 .........................................102
圖三十九、奈米銀粒子 (104 ppm) /去離子水溶液之粒徑分佈 ...........103
圖四十、奈米銀粒子 (104 ppm) /丙二醇溶液之粒徑分佈 ..............104
圖四十一、奈米銀粒子之FT-IR圖譜 ................................106
圖四十二、奈米銀粒子於 (A) 丙二醇及 (B) 去離子水溶液中的分佈情形 ...109
圖四十三、E. coli菌群生長於含奈米銀粒子/去離子水溶液之LB培養基: (a) Control (deionized water only), (b) 104, (c) 103, (d) 102, (e) 10, (f) 1, (g) 0.1 ppm ......................................110
圖四十四、奈米銀粒子/去離子水溶液抑制E. coli菌群生長之效果 ........111
圖四十五、E. coli菌群生長於含奈米銀粒子/丙二醇溶液之LB培養基:(a) Control (propylene glycol only), (b) 102, (c) 10, (d) 1, (e) 0.1 ppm ....112
圖四十六、奈米銀粒子/丙二醇溶液抑制E. coli菌群生長之效果 ..........113
圖四十七、低密度聚乙烯膜經膜改質處理之FT-IR圖譜 ..................117
圖四十八、紫外燈強度對低密度聚乙烯膜經膜改質處理後,1716.34 cm–1 (–C=O) 位置吸收波峰之影響 ..............................................118
圖四十九、高密度聚乙烯膜經雙管紫外燈膜改質處理之FT-IR圖譜 ..........120
圖五十、紫外燈強度對高密度聚乙烯膜經膜改質處理後,1716.34 cm-1 (-C=O) 位置吸收波峰之影響 ..................................................121
圖五十一、聚丙烯膜經膜改質處理之FT-IR圖譜 ........................123
圖五十二、紫外燈強度對聚丙烯膜經膜改質處理後,1716.34 cm-1 (–C=O)位置吸收波峰之影響 .....................................................124
圖五十三、膜載體 (a) 高密度聚乙烯膜, (b) 低密度聚乙烯經雙管紫外燈膜改質處理 (1) 6 小時, (2) 12 小時之膜表面結構 ..........................126
圖五十四、奈米銀抗菌膜之架構圖 .................................129
圖五十五、架橋劑與改質膜載體結合之FT-IR圖譜 .....................132
圖五十六、LDPE改質膜經架橋處理後之掃描式電子顯微鏡 (SEM) 圖 ......133
圖五十七、LDPE改質膜架橋後經超音波震盪處理之掃描式電子顯微鏡 (SEM) 圖 ...134
圖五十八、奈米銀粒子經架橋劑固定於膜載體之FT-IR圖譜 ..............136
圖五十八、奈米銀粒子經架橋劑固定於膜載體之FT-IR圖譜 (續) .........137
圖五十九、奈米銀抗菌膜對 E. coli 菌群之抑菌情形: (A) Blank, (B) Control (LDPE 膜), (C) 10 ppm silver nanoparticles 抗菌膜 ...140
圖六十、接觸時間對奈米銀粒子 (102 ppm) 抗菌膜抑制E. coli 菌群之影響: (A) 6 小時, (B) 12 小時, (C) 24小時 與 (1) 對照組, (2) 10 ppm silver nanoparticles 抗菌膜 ........................................141
圖六十一、奈米銀抗菌膜重複使用對抑菌功效影響 (耐久性測試): (A)對照組, (B) 首次使用, (C) 第二次使用, (D)第三次使用之奈米銀抗菌膜 ............ 142
圖六十二、奈米銀抗菌膜對 B. substilis 菌群之抑菌情形: (A) Blank, (B)Control (LDPE 膜), (C) 10 ppm silver nanoparticles 抗菌膜 ...144
圖六十三、奈米銀抗菌膜對實驗室中空氣落菌之抑菌情形 ...............146
圖六十四、奈米銀抗菌膜對實習工廠中空氣落菌之抑菌情形 .............147
內田真志。1996。無菌系抗菌系各論(2)銀、銅、亞鉛。防菌防酶。24:735-742。
尤英妃。2001。酵素在活性包裝上之應用。科學與技術。33(4): 40-51.
王聖雯。2005。應用UV/O3/TiO2於聚烯族烴包材之表面改質。私立輔仁大學食品營養系碩士論文。台北。
丘志威 吳定峰。2003。食品微生物學精要。藝軒圖書出版社。台北。
任鏘諭。1998。奈米金屬微粒之製備及其性質研究。國立清華大學工程與系統科學系碩士班論文。新竹。
吳思蓉。2004。乙醇生物偵檢標籤之開發與應用。私立輔仁大學食品營養系碩士論文。台北。
吳致廣。2002。綠茶萃取物嵌入聚乙烯醇-澱粉膜抗氧化與抗菌性之研究。私立輔仁大學食品營養系碩士論文。台北。
呂宗昕。2003。圖解奈米科技與光觸媒。初版。台北市:商周出版。175 p。
李賢學。2004。化學還原法製備奈米銀及其應用。國立清華大學化學工程學系博士論文。新竹。
卓怡妏。2003。活性包裝中乙烯調控劑的研發。私立輔仁大學食品營養系碩士論文。台北。
周開平,陳郁文。2005二氧化鈦光觸媒的應用。科學期刊。395。
林析安。2001。新市調氣包裝對常溫中式即食食品微生物的抑制功能。私立輔仁大學食品營養系碩士論文。台北。
芝崎勳。1983。新食品殺菌工學。光琳琳式會社。東京。262-272。
洪啟豪。2001。以溶劑萃取還原法製備銀奈米粒子之研究。國立台北科技大學化學工程系碩士班論文。台北。
紀璟叡。2004。臭氧之微生物控制效果探討。食品工業 36(4)39:50。
徐釩。2000。製備銅與銀的奈米粒子。國立中正大學碩士班論文。嘉義。
高山正彥。1996。無機系抗菌劑之抗菌性。防菌防酶。24:561-567。
高麗寬紀。1985。殺菌劑之現況與將來。防菌防酶。13:261-269。
第六章 參考文獻
郭冠甫。1995。銀奈米粒子之合成及鑑定。國立中正大學化學系碩士班論文。嘉義。
陳茂昌。1993。抗菌膜於食品包裝上的應用。食品工業。25:39-43。
曾俊傑。2005。活性包裝中二氧化硫釋放劑之製備及柿餅儲存之應用。私立輔仁大學食品營養系碩士論文。台北。
馮臨惠。1993。活性包裝系統之發展。食品工業。25(5): 35-41。
黃彥文。1999。聚乙二醇系統製備銀奈米粒子之研究。國立成功大學化學工程系碩士論文。台南。
劉岳松。1997。固定化四級銨鹽與銀離子抗菌材料對水中常見病原菌之抑菌效果探討。國立海洋大學食品科學系化學系碩士班論文。基隆。
劉金賢。2002。利用生物降解膜為活性包裝中機能性小包之基質。私立輔仁大學食品營養系碩士論文。台北。
劉富文。1994。園產品採收後處理技術及儲存技術。台灣青果運銷合作社。
蔡東和。2001。橡膠製品之表面抗菌處理。私立大葉大學食品工程研究所碩士論文。彰化。
蔡春進,簡弘民,張正生,張思敏,江依馨,陳茂餘,蘇智偉。2004。化工技術。第12卷第二期。
賴高宏。2005。奈米抗菌臘的分散製程研究。國立中正大學化學暨生物化學碩士班論文。嘉義。
錢明賽。1990。蔬果的調氣包裝。食品工業。22:8-16。
鍾仁傑。2000。以溶膠-凝膠法製備含鋅及銀之氫氧基磷灰石與其抗菌性質研究。國立清華大學材料科學工程學系碩士班論文。新竹。
鍾遠懷。1993。常見食品殺毒劑殺菌功能。食品工業 25(6):24-32。
顏國峻。1999。活性包裝中多功能吸附劑之研發。私立輔仁大學食品營養系碩士論文。台北。
蘇志杰。2004。奈米粉體粒徑檢測方法之簡介。機械工業雜誌。255:131-139。
蘇品書。1989。超微粒子材料技術。復漢出版社。
顧洋。1995。紫外線臭氧氧化程序在廢水處理上之應用。工業污染防治 56(10):248-261。
顧洋。1996。臭氧處理在淨水工程上之應用。自來水會刊 15(3):32-33。
Abeles FB, Morgan PW, Saltveit ME. 1992. Ethylene in plant biology. Vol 15, 2nd ed. Academic press, San Diego, California.
Ahvenainen R. 2003. Active and intelligent packaging. In: Ahvenainen R, editor. Novel food packaging techniques. 1st ed. Cambridge. England. Woodhead Publishing Limited 5-43.
Aldissi M, Armes SP. 1991. Colloidal dispersions of conducting polymers. Prog Org Coat 19:21-58.
An DS, Kim YM, Lee SB, Paik HD, Lee DS. 2000. Antimicrobial low density polyethylene film coated with bacteriocins in binder medium. Food Sci Biotechnol 9:14-20.
Angulo- Sanchez JL, Ortega- Ortiz, Sanchez- Valdes S. 1994. Photodegradation of polyethylene films formulated with a titanium- based photosensitizer and titanium dioxide pigment. J Appl Polym Sci 53: 847-856.
Appendini P, Hotchkiss JH 2002. Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113-126.
Atsumi K, Saito T, Komori M. 1992. Process for producing an antibacterial ceramic material. United States Patent, Patent Number:5, 151,122.
Bai G, Weng Y, Hu X. 1996. Surface modification of ployolefine by UV light/ ozone treatment. J Appl Polym Sci 60:1397-2402.
Bai G, Weng Y, Hu X. 1996. Surface modification of polyolefine by UV light/ ozone treatment. J Appl Polym Sci 60: 1397-2402.
Black, R.Q., Quail, K.J., Reyes, M., Kuzyk, M., and Ruddick, L. 1993. Shelf life extension of pita bread by modified atmosphere packaging. Food Australia 45: 387-391.
Blakistone B, Chuyate R, Kautter D Jr, Charbonneau J, Suit K. 1999. Efficacy of oxonia active against selected spore formers. J Food Prot 62:262-267.
Briggs D, Kendall CR, Blythe AR, Wootton AB. 1983. electrical discharge treatment of polypropylene film. Polymer 24: 47-52.
Brody AL, Budny JA. 1995. Enzymes as active packaging agents. Active Food Packaging 174-194.
Brody AL, Strupinsky ER, Kline LR. 2001. Active packaging for food application.
Brown WE.1992. Plastics in food packaging. 453. Marcel Dekker. Inc. New York.
Bu H, Rong J, Yang Z. 2002. Macromol Rapid Commun 23:460.
Carley JF, Kitze PT. 1978. Corona-discharge treatment of polyethylene films. I. Experimental work and physical effects. Polym Eng Sci 18: 326-334.
Carley JF, Kitze PT. 1980. Corona-discharge treatment of polymeric films. II. Chemical studies. Polym Eng Sci 20:330-338.
Chen SC, Lin C-A, Fu A-H and Chuo YW. 2003. Inhibition of microbial growth in ready-to-eat food stored at ambient temperature by modified atmosphere packaging. Packag Technol Sci 16(6): 239-247.
Chen YH, Chen SY. 2002. Laser ablation method : ues of surfactants to form the dispersed Ag nanoparticles. Colloids and Surf 197:133
Church N. 1994. Developments in modified-atmosphere packaging and related technologies. Trends Food Sci Technol 5: 347.
Cooksey K. 2001. Antimicrobial food packaging materials. Elsevier Science 6-10.
Daeschel MA, McGuire J, Al-Makhlafi H. 1992. Antimicrobial activityof nisin adsorbed to hydrophilic and hydrophobic silicon surfaces. J Food Prot 55:731-755. Chemosphere 46:1141-1146.
Danials JA, Krishnamurthi R, Rizvi SSH. 1985. A review of effects of carbon dioxide on microbial growth and food quality. J Food Prot 48: 532-537.
Daphne PD, James PS, Burke B, Greg Sa, John WA, John K. 2004. Effects of mastic resin and its essential oil on the growth of proteolytic Clostridium botulinum. Int J Food Microbiol 94:313-322.
Day BPF. 2000. Underlying principles of active packaging technology. Food Cosmetics Drug Packag 23:137-139.
De Kruijf N, Van Beest M, Rijk R, Sipiläinen-Malm t, Paseiro L, de Meulenaer B. 2002. Active and intelligent packaging: applications and regulatory aspects. Food Addi Contam 19: 144-162.
Deitch EA, Marino AA, Gillespie TE, James A. 1983. Silver-nylon: A new antimicrobial agent. Antimicrob Agents Chemoth 23:356-359.
Del Nobile MA, Cannarsi M, Altieri C, Sinigaglia M, Favia P, Iacoviello G and D’Agostino R. 2004. Effect of Ag-containing nano-composite active packaging system on survival of Alicyclobacillus acidoterrestris. J Food Sci 69:379-383.
Del Nobile MA, Cannarsi M, Altieri C, Sinigaglia M, Favia P, Iacoviello G, D’Agostono R. 2004. Effect of Ag-containing nano-composite active packaging system on survival of Alicyclobacillus acidoterrestris. J Food Sci 69:379-383.
Efimenko K, Wallace WE, Genzer J. 2002. Surface modification of sylgard- 184 poly (dimethyl silozane) networks by ultraviolet and ultraviolet / ozone treatment. J Colloid Interface Sci 254: 306-315.
El-Zaher NA, Micheal MN. 2002. Time optimization of Ultraviolet- ozone pretreatment for improving wool fabric properties. J Appl Polym Sci. 85: 1469-1476.
El-Zaher NA, Micheal MN. 2002. Time optimization of Ultraviolet-ozone pretreatment for improving wool fabric properties. J Appl Polym Sci 85:1469-1476.
Fabech B, Hellstrom T, Henrysdotter G, Hjulmand-Lassen M, Nilsson J, Rüdinger L, SipilÄinen-Malm T, Solli E, Svensson K, Thorkelsson ÁE, Tuomaala V. 2000. Active and Intelligent Food Packaging. A Nordic Report on the Legislative Aspects. Copenhagen: Nordic Council of Ministers.
Farber JM. 1991. Microbiological aspects of modified atmosphere -packaging technology-a review. J Food Prot 54:58-70.
Feng QL, Kim TN, Wu J, Park ES, Kim JO, Lim DY, Cui FZ. 1998. Antibacterial effects of Ag-Hap thin films on alumina substrates. Thin Solid Films 335:214-219.
Floros JD, Dock LL, Han JH. 1997. Active packaging technologies and applications. Food Cosmetics Drug Packag 20(1): 10-7.
Foerch R, McIntyre NS, Hunter DH. 1990. oxidation of polyethylene surface by remote plasma discharge: a comparison study with alternative oxidation methods. J Polym Sci Polym Chem Ed 28: 193-204.
Garbutt JM, Goldstein M, Gellman E, Shannon W, Littenberg B. 2001. A randomized, placebo-controlled trial of antimicrobial treatment for children with clinically diagnosed acute sinusitis. Pediatrics 107:619-25.
Goddard NDR, Kemp RM, Lane R. 1997. an overview of smart technology. Packag Technol Sci 10:129-143.
Gray JE, Norton PR, Alnouno R, Marolda CL, Valvano MA, Griffiths K. 2003. Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials 24:2759-2765.
Haack SK, Klug MJ, Velbel MA, McGuire JT, Smith EW, Long DT, Hyndman DW. 2000. Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents. Chem Geol 169:471-485.
Hahn H, Averback RS. 1990. J Appl Phys 67:1113.
Han JH. 2000. Antimicrobial food packaging. Food Technol 54: 56-65.
Hancock BC, York P, Rowe RC. 1997. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm 148:1-21.
Hara H. 1985. Food preservation by ethyl alcohol. Food Packaging 3:65.
Hass V, Birringer R. 1992. Nanostructured Mater 1:491.
Hatakeyama H, Kashiba T. 1991. Methods for treating food and a deoxidizer package in microwave oven. US Patent 4,996,068.
Henglein FA. 1993. A Ber Bunsenges Phys Chem 97:257.
Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC. 2004. Nanoseparated Polymeric networks with Multiple Antimicrobial Properties. Adv Mater 12.
Hoojjat P, Harte BR, Hernandaz RJ, Giacin JR, Miltz J. 1987. Mass transfer of BHT from high density polyethylene film and its influence on product stability. J Packag Technol 1:78-81.
Hotchkiss JH. 1988. Experimental approaches to determining the safety of food packaged in modified atmospheres. Food Technol 42(9): 55, 60-62, 64.
Hurme E, Sipilainen-Malm T, Ahvenainen R, Nielsen T. 2002. Active and Intelligent Packaging. In: Ohlsson T, Bengtsson N. Minimal Processing Technologies in the Food Industry.Cambridge. England. Woodhead Publishing Limited 87-123.
Hyning DLV, Llemperer WG, Zukoski CF. 2001. Silver nanoparticle formation: predicitions and verification of the aggregative growth model. Langmuir 17:3128.
Ichimura K, Yamada MHMH, Mizukoshi OSM. 1992. Method of marking titanium oxide powder having antimicrobial metal supported thereon. United States Patent, Patent Number:5,147,686.
Im KC, Taksaki Y, Endo A, Kuriyama M. 1996. Antimicrobial activity of A-type zeolite supporting silver ions in deionized distilles water. J Antibact Antifung Agents 24:269-274.
Inns R. 1987. Modified atmosphere packaging. In: Mordan processing, packaging and distribution system for food. London. UK. Paine FA. Blackie 36-51.
Isquith AJ, Abbortt EA, Walters PA. 1972. Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl Microbiol 24:859-863.
Ivan S, Branka SS. 2004. Silver nanoparticles as antimicrobial agent : a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177-182.
Ivan S, Dan VG, Egon M. 2003. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260:75-84.
Izumi, Y., Katoh, M, Ohte, T., Ohtani, S., Kojima, A. and Saitoh, N. 1999. Heating effects on modifying carbon surface by reactive plasma. Appl. Surface Sci. 100/101: 179-183.
James J, Lamikanra O, Morris JR, Main G, Walker T, Silva J. 1999. Interstate shipment and storage of fresh muscadine grapes. J Food Qual 22:605-617.
Jayas DS, Jeyamkondan S. 2002. Modified Atmosphere Storage of Grains Meats Fruits and Vegetables. Biosyst Eng 82:235-251.
Jayasekara R, Sheridan S, Lourbakos E, Beh H, Christie GBY, Jenkins M, Halley PB, Lonergan GT. 2003. Biodegradation and ecotoxicity evaluation of a bionolle and starch blend and its degradation products in compost. INTERNATIONAL BIODETERIORATION AND BIODE 51:77-81.
Jiang P, Hwang KS, Mittleman DM, Bertone JF, Colvin VL. 1999. J Am Chem Soc 121:11630.
John G. 2003. Essentials of food Microbiology. 藝軒圖書出版社。
Jscoboson HW, Scholla MH, Wigfall AW. 1996. Antimicrobial compositions process for preparing the same and use. United State Patent, Patent Number:5,503,840.
Junji Y. 1991 Trends in barrier design. Packaging Japan 5:30.
Kaczmarek H, Kowalonek J, Szalla A, Sionkowska A. 2002. Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surf Sci 507:883-888.
Kaczmarek H, Kowlonek J, Szalla A, Sionkowska A. 2002. Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surf Sci 507-510: 883-888.
Kaczmarek H, Kowlonek J, Szalla A, Sionkowska A. 2002. Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surf Sci 507-510: 883-888.
Kaczmarek H, Kowlonek J, Szalla A, Sionkowska A. 2002.Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surf Sci 507-510:883-888.
Kader AA, Zagory D, Jerbel EL. 1989. Modified atmosphere packaging of fruits and vegetables. CRC Crit Rev Food Sci Nutr 28:1-30.
Kakinoki K, Yamane K, Teraoka R, Otsuka M, Matsuda Y. 2004. Effect of relative humidity on the photocatalytic activity of titanium dioxide and photostability of famotidine. J Pharm Sci 93 (3): 582-289.
Khadre MA, Yousef AE, Kim KG. 2001. Microbiological aspect of ozone applications in food: A review. J Food Sci 66: 1242-1252.
Kim JW, Lee JE, Kim SJ, Lee JS, Ryu JH, Kim J, Han SH, Chang IS Suh KD. 2004. Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres. Polymer 45:4741-4747.
Kim KD, Hanb DN, Kimb HT. 2004. Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method. Chemical Eng J 104:55-61.
Kim YM, An DS, Park HJ, Park JM, Lee DS. 2002. Properties of Nisin-incorporated polymer coating as antimicrobial packaging materials. Packag Technol Sci 15:247-254.
Kiyotani K, Yoshida T. 1996. Bactericidal effects of antibacterial stone againt Legionella pneumophila and other pathogenic microorganisms. J Antibact Antifung Agents 24:107-113.
Klein A, Knorr D. 1990. Oxygen absorption properties of powder iron. J Food Sci 55(3): 869.
Kourai H, Nakagawa K, Yamada Y. 1993. Antimicrobial characteristic of zirconium phosphate ceramics containing silver ion in the crystal structure. J Antibact Antifung Agents 21:77-84.
Kumar R, Munstedt H. 2005. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081-2088.
Labuza TP. 1996. An Introduction to active packaging for food. Food Technol 30.
Langlias B, Reckhow DA, Brink DR. Ozone in water treatment application and engineering. Lewis publishers Michigan. U.S.A.
Langlias B, Reckhow DA, Brink DR. Ozone in water treatment application and engineering. Lewis publishers Michigan. U.S.A.
Lee CH, An DS, Lee SC, Park HJ, Lee DS. 2004. A Coating for use as an antimicrobial and antioxidative packaging material incorporating nisin and α-tocopherol. J Food Eng 62:323-329.
Lee M, Lee GD. 1992. Quantification of severe accidents source terms of BWR 4 reactor with Mark I containment using source term code package. Nucl Eng Des 313-337.
Lisiecji I, Pileni MP. 1993. J Am Chem 115:3887.
Liu Z, Wang X, Wu H, Li C. 2005. Silver nanocomposite layer-by-layer films based on assembled polyelectrolyte/dendrimer. J Colloid Interface Sci 287:604-611.
Lu Y, Liu GL, Lee LP. 2005. High-Density Silver Nanoparticle Film with Temperature-Controllable Interparticle Spacing for a Tunable Surface Enhanced Raman Scattering Substrate. Nanoletters 5:5-9.
Lubarsky GV, Davidson MR, Bradley RH. 2004. Elastic modulus, oxidation depth and adhesion force of surface modified polystyrene studied by AFM and XPS. Surf Sci 558:135-144.
Maloba FW, Rooney ML, Wormell P, Nguyen M. 1996. Improved oxidative stability of sunflower oil in the presence of an oxygen-scavenging film. J Am Oil Chem Soc 73:181-185.
Mathiesion I, Bradley RH. 1996. Improved adhesion to polymers by UV/ozone surface oxidation. Int J Adhesion and Adhesives 16:29-31.
Mathiesion I, Bradley RH. 1996. Improved adhesion to polymers by UV / ozone surface oxidation. Int J Adhesion and Adhesives 16: 29-31.
Matsumoto N, Kunisaki S, Fujiwara G, Masuda M, Horie H, Kawanka A. 1996. Antibacterial fiber, textile and water-treating element using the fiber and method of producing the same. United State Patent, Patent Number:5,496,860.
McIntyre NS, Walzak MJ. 1995. New UV / ozone treatment improves adhesiveness of polymer surface. Modern Plastics 70: 79-81.
McIntyre NS, Walzak MJ. 1995. New UV / ozone treatment improves adhesiveness of polymer surface. Modern Plastics 70: 79-81.
McIntyre NS, Walzak MJ. 1995. New UV/ ozone treatment improves adhesiveness of polymer surface. Modern Plastics 70:79-81.
Milan M, George MW. 1995. Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors. Tibtech 13:228-235.
Moriya Y, Komutsu T, Inoue Y. 1992. Deoxidizer sheet. US Patent 5143769.
Murakami TN, Fukushima Y, Hirano Y, Tokuoka Y, Takahashi M, Kawashima N. 2003. Surface modification of polystyrene and poly( methyl methacrylate) by active oxygen treatment. Collids Surf B 29: 171-179.
Murat O, Caner UY, Hasan S. 1999. Physical polymer surface modification methods and applications in food packaging polymers. Crit rev food sci nutr 39(5): 457-477.
Nakagawa Y, Tawaratani T, Kourai H, Horie T, Shibasaki I. 1984. Adsorption of Escherichia coli onto insolubilized lauryl pyridinium indide and its bacteriostatic action. Appl Environ Microbiol 47:88-93.
Natrajan N, Sheldon BW. 2000. Efficacy of nisin-coated polymer films to inactivate Salmlnella Typhimurium on fresh Broiler skin. J Food Prot 63:1189-1196.
Nemo. 2004. Dynamic light scattering (DLS). Amsterdam 6.
Niels Bøknæs, Carsten østerberg, Jette Nielsen, Paw Dalgaard. 2000. Influence of Freshness and Frozen Storage Temperature on Quality of Thawed Cod Fillets Stored in Modified Atmosphere Packaging. Lebensm Wiss u-Technol 33:244-248.
Nielsen PV, Rios R. 2000. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int J Food Microbiol 60:219-229.
Nurdin N, Helary G, Sauvet G. 1993. Biocidal polymer active by contact II biological evaluation of polyurethane coating with pendant quaternary ammonium salts. J Appl Polymer Sci 50:663-670.
Nyborg WL. 2000. Biological effects of ultrasound: development of safety guidelines - Part I: personal histories. Ultrasound Med Biol 26:911-964.
Ogi H, Hirao M, Shimoyama M. 2002. Activation of TiO2 photocatalyst by single- bubble sonoluminescence for water treatment. Ultrasonics 40: 649-650.
Okada R. 1991. Appl Phys Lett 58:1662.
Opperman WJ, Fourie JF, Sanderson RD, Britz TJ. 1999. A monolithic device for in-package SO2 generation for the control of postharvest Botrytis decay of table grapes. J Food Qual 22:427-438.
Ozdemir M, Sadikoglu H. 1998. A new and emerging technology: Laser-induced surface modification of polymers. Trends Food Sci Technol 9:159-167.
Ozdemir M, Yurteri CU, Sadikoglu H. 1999.Physical polymer surface modification methods and applications in food packaging polymers. Crit Rev Food Sci Nutr 39:457-477.
Ozen BF, Floros JD. 2001. Effects of emerging food processing techniques on the packaging materials. Food Sci Technol 12: 60-67.
Ozen BF, Mauer LJ, Floros JD. 2002. Effects of ozone exposure on the structure, mechanical and barrier properties of select plastic packaging films. Packag Technol Sci 15: 301-311.
Park SJ, Jang YS. 2003. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. J Colloid Interface Sci 261:238-243.
Pastoriza L, Sampedro G, Herrera JJ, Cabo ML. 1996. Effect of modified atmosphere packaging on shelf-life of iced fresh bake slica. J Sci Food Agric. 71:541-547.
Peng H, Brooks BW, Chan R, Chyan O, La Point TW. 2002. Response of Ceriodaphnia dubia to ionic silver: discrepancies among model predictions, measured concentrations and mortality.
Peter MA. 1999. Non-ethylene, non-respiratory volatiles in harvested fruits and vegetables: their occurrence, biological activity and control. Posth Bio Technol 12:109-125.
Petit C, Lixon P, Pileni MP. 1993. 97:12974.
Peyton GR, Glaze WH. 1988. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 3. photolysis of aqueous ozone. Environ Sci Technol 22: 761.
Prengle HW, Mauk CE. 1978. New technology ozone/UV chemical oxidation wastewater process for metal complex, organic species and disinfection. AIChE sym. 74: 228-238.
Quintavalla S, Vicini L. 2002. Antimicrobial food packaging in meat industry. Meat Sci 62:373-380.
Rasmussen PH, Hansen A. 2001. Staling of Wheat Bread Stored in Modified Atmosphere. Lebensm Wiss u-Technol 34:487-491.
Reetz MT, Quaiser SA. 1995. A new method for the preparation of nanostructured metal clusters. Angew Chem Int Ed Engl 34:2240.
Richardson SD, Thruston, JR. AD, Collette TW. 1996. Identification of TiO2/ UV disinfection byproducts in drinking water. Environ Sci Technol 30: 3327-3334.
Rizvi SSH. 1981. Requirements for foods packaged in polymeric films. Crit Rev Food Sci Nutr 14: 111-134.
Robertson GL. 1993. Food Packaging: Principle and Practice. Marcel Dekker. New York.
Rooney ML. 1995a. Active Food Packaging. Blackie Academic and Professional. An Imprint of Chapman & Hall. Glasgow, UK. 260.
Rooney ML. 1995b. Active Packaging in Polymer Films. In: Rooney ML. Active Food Packaging. London. Blackie Academic and Professional 74-110.
Salminen A, Latva-Kala K, Randell K, Hurme E, Linko P, Ahvenainen R. 1996. The effect of ethanol and oxygen absorption on the shelf-life of packed sliced rye bread. Packag Technol Sci 9: 29-42.
Sapieha S, Cerny J, Klemberg-Sapieha JE, Martinu L. 1993. Corona vs. low-pressure plasma treatment: effect on surface properties and adhesion of polymers. J Adhesion 42: 91-102.
Schierholz JM, Lucas LJ, Rump A, Pulverez G. 1998. Efficacy of silver-coated medical device. Review J Hosp Inf 40:257-262.
Scott D. 1958. Enzymatic oxygen removal from packaged foods. Food Technol 12:7.
Shang J, Du Yaoguo, Xu Z. 2002 Photocatalytic oxidation of heptane in the gas-phase over TiO2. Chemosphere 46: 93-99.
Shapero M, Nelson PA, Labuza TP. 1978. Ethanol inhibition of Staphylococcus aureus. J Food Sci 43:1467.
Shirakawa HK, Yamakawa OK, Nihonmatsu HG. 1997. Light-weight antibacterial ceramic and antibacterial ceramic filter. United State Patent, Patent Number:5,618,762.
Siragusa GR, Cutter CN, Willett JL. 1999. Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbial 16:229-235.
Smith JP, Ooraikul B, Koevsen WJ, Jackson ED, Lawence RA. 1986. Novel approach to oxygen control in modified atmosphere packing of backery products. Food Microbiol 3:315-320.
Smith, J.P., Lyver, A., and Morris, J. 1994. Effect of ethanol vapor on the growth of common mold contaminant of bakery products. Food Microbiol. 11: 329-337.
Smith, J.P., Ooraikul, B., Koersen, W.J., van de Voort, F.R., Jackson, E.D., and Lawrence, R.A. 1987. Shelf life extension of a bakery product using ethanol vapor. Food Microbiol. 4: 3329-337.
Soares NFF, Hotchkiss JH. 1998a. Bitterness reduction in grapefruit juice through active packaging. Packag Technol Sci 11:9-18.
Soares NFF, Hotchkiss JH. 1998b. Naringinase immobilization in packaging films for reducing naringin concentration in grapefruit juice. J Food Sci 63:61-65.
Sopyan I, Murasawa S, Hashimoto K, Fujishima A. 1994. High efficient TiO2 film photocatalyst. Degradation of gaseous acetaldehyde. Chem Lett 23:723-726.
Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO. 1974. Microb Agents Chemother 6:637.
Stabroulakis G, Sfakiotakis E. 1997. Regulation of propylene-induced ripening and ethylene biosynthesis by oxygen in ‘Hayward’ kiwifruit. Postharv Biol Technol 10:189-194.
Stefano S, Nicola E, Albero B, Anna L, Paolo C. 2004. Nisin-loaded poly-L-lactide nano-particles produced by CO2 anti-solvent precipitation for sustained antimicrobial activity. Int J Pharm 287:163-173.
Takikawa H, Sasaoka T, Sakakibara T. 1999. Synthesis of anatase TiO2 film by reactive vacuum arc deposition method. Electrical Engineering in Japan 126(4): 866-872.
Tan Y, Wang Y, Jiang L, Zhu D. 2002. Thiosalicylic Acid-Functionalized Silver Nanoparticles Synthesized in One-Phase System. J Colloid Interface Sci 249:336-345.
Taylor MA, Chambers KR, Watts JE, Dodd MC. 1990. Effect of temperature, SO2 concentration and exposure time on storage quality of Waltham Cross and Barlinka grapes. Decid Fruit Grower 40:327-331.
Taylor SL, Bush RK. 1986. Sulfites as food ingredients. Food Tech 40:47-52.
Teare DOH, Emmison N, Ton- That C, Bradley RH. 2000. Cellular attachment to ultraviolet ozone modified polystyrene surfaces. Langmuir 16 (6): 2818-2824.
Teare DOH, Emmison N, Ton-That C, Bradley RH. 2000. Cellular attachment to ultraviolet ozone modified polystyrene surface. Langmuir 16:2818-2824.
Tjong SC, Chen H. 2004. Nanocrystalline materials and coatings. Mater Sci Eng 45:1-88
Ton-That C, Teare DOH, Campbell PA, Bradley RH. 1999. Surface characterization of ultraviolet-ozone treated PET using atomic force microscopy and X-ray photoelectron spectroscopy. Surf Sci 433:278-282.
Ton-That C, Teare DOH, Campbell PA, Bradley RH. 1999. Surface characterization of ultraviolet - ozone treated PET using atomic force microscopy and X-ray photoelectron spectroscopy. Surf Sci 433: 278-282.
Vanrheenen PR, Mckelvy MJ, Glaunsinger WS. 1987. Synthesis and characterization of small platinum particles formed by the chemical reduction of chloroplatinic acid. J Solid State Chem 67:151.
Vermeriren L, Devlieghere F, Beest MV, Kruijf ND, Debevere J. 1999. Developments in active package of foods. Trends Food Sci Technol 10:77-86.
Yang H, Zhu S, Ning P. 2004. Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J Appl Polym Sci 92: 3201-3210.
Yoshikawa Y. 1983. Food freshness preserving technology with oxygen absorber and its effects. J Jpn Soc Food Sci Technol. 30: 308.
Zagory D, Kadder AA. 1988. Modified atmosphere packaging of fresh produce. Food Technol 42:70.
Zhuang R, Beuchat LR, Chinnan MS, Shewfelt RL, Huang Y-W. 1996. Inactivation of Salmonella Montevideo on tomatoes by applying cellulose-based edible films. J Food Prot 59:808-812.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top