跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:甄家灝
研究生(外文):Chia-Hao Chen
論文名稱:盲目通道估測應用於不加循環字首的正交分頻多工調變系統
論文名稱(外文):Blind Channel Estimation for SIMO-OFDM and STBC-OFDM Systems without Cyclic Prefix
指導教授:余金郎余金郎引用關係
指導教授(外文):Jung-Lang Yu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:77
中文關鍵詞:正交分頻多工循環字首通道估測錯誤率最佳解平均法
外文關鍵詞:OFDMBlindCyclic PrefixSTBCSubspaceLinear SmoothingChannel Estimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前在正交分頻多工調變(OFDM)系統上,循環字首是不可少的一種被應用於通道估測以及抵抗多路徑通道的一種方法。在之前的論文中,有利用子空間(SS)盲目通道估測技術來估測通道來應用於不加循環字首的OFDM系統,其原理乃利用等效通道向量正交於接收訊號的雜訊子空間的特性,即可形成一齊次方程式,並利用最小平方法(least square)來計算出在有雜訊誤差下的最佳解,也有利用線性平滑運算(LS)來做盲目通道估測的方法應用於單傳多收(SIMO) OFDM的系統上。因為我們的OFDM系統不需要使用循環字首,因此比一般的OFDM系統擁有更高的頻寬效益。LS的方法運算量會比用SS的方法還少,但SS的方法效能卻會優於LS。我們在這篇論文中,提出一種利用區塊矩陣(Block matrix scheme)的方法分別對LS以及SS去做改善。區塊矩陣的方法不但使得LS和SS的效能變好,還使得它們的收斂速度變得更快。不僅如此,由於區塊矩陣使用比較小的接收訊號的自相關矩陣,因此區塊矩陣的運算量也會低於傳統的LS和SS方法。
我們還加上了空時碼(STBC)在OFDM系統中,使得天線多工的效能更加的明顯。由於加上STBC之後,我們依然使用不加循環字首的OFDM系統,因此我們依然保有更高的頻寬效益。我們利用STBC的特性使用forward-backward平均法,提出增加取樣資料的有效方法,以提高系統的效能。並且使用區塊矩陣的方法去改善STBC-OFDM系統,這兩個效能加強的方法可以同時使用並且增加效能。經由改善方法後的STBC-OFDM系統在位元錯誤率(BER)的效能表現上甚至優於傳統的OFDM以及補零的OFDM系統。
In practical orthogonal frequency-division multiplexing (OFDM) systems, cyclic prefix insertion and channel estimation are indispensable to achieve coherent demodulation. In previously, there have subspace (SS) and linear smoothing (LS) based blind channel estimation methods for single input multiple output(SIMO) OFDM systems over a time-dispersive channel are investigated. SS method has better performance than LS method, but LS method has lower computation than SS method. The two proposed methods do not require a cyclic prefix and thus leading to higher spectral efficiency. In this paper, we propose a performance enhance measure by block matrix scheme to improve SS and LS methods. Because we are to cope with smaller autocorrelation matrix than SS and LS, we obtain such that computational cost is reduced. Besides, the performance enhances measure by block matrix scheme convergence faster than conventions SS and LS.
In this paper, we also utilize the Alamonti’s Space-time block code (STBC) scheme and subspace (SS) channel estimation on the OFDM system without cyclic prefix. The STBC-OFDM system without cyclic prefix has higher diversity order than SIMO-OFDM system without cyclic prefix. We also propose two performances enhance methods, forward-backward averaging technique and block matrix scheme method, to improve SS channel estimation. The forward-backward technique doubles the data information without increasing computation. The block matrix scheme method not only makes convergence faster also has lower complex of operation by using smaller autocorrelation matrix than traditions (SS) channel estimation. After we are enhance the performance in STBC-OFDM system without CP, the performance even better than STBC-CP-OFDM and STBC-ZP-OFDM system. We will see it clearly in computer simulations.
Abstract(in Chinese)………………………………………………………………...….i
Abstract……………………………………………...…………………………….…..ii
Contents………………………………………………………………………….…...iii
List of Figures……………………………………………………………..…………..v
1 Introduction…………………………………...……………….……1
1.1. Overview of OFDM………………………………………………..……..3
1.2. Cyclic Prefix………………………………………………………………...4
1.3. Space-Time Block Coded…………………………………………………...5
1.4. Forward-Backward Averaging Technique…………………………………..7
1.5. Outline of this Thesis……………………………………………………….8
2 Basic Function……………………………………..……………….10
2.1. Single-Input Multiple-Output (SIMO) OFDM systems………….………..10
2.2. Blind Channel Estimation………………………………………...…….…13
2.3. Space-Time Block Coding (STBC) OFDM systems………………………15
3 Blind Channel Estimation for SIMO-OFDM Systems without
Cyclic Prefix…………...…………………………………………...18
3.1. System Model……………………...……..………………………………..18
3.2. Blind Channel Estimators………………….………………………………21
3.2.1 Linear Smoothing (LS) Method……………………………….……..21
3.2.2 Subspace (SS) Method………..……………..……………….……...23
3.3. Performance enhancement…….……...…………………………..……….25
3.3.1 Block matrix scheme for LS method………………………….…...25
3.3.2 Block matrix scheme for SS method………………………………30
3.4. Symbols Detection……………………………………………………….33
3.5. Simulations………………………………………………………………...34
4 Blind Channel Estimation for STBC-OFDM Systems without
Cyclic Prefix…………………………….………………………....48
4.1. System Model…………………………………………………….………..48
4.2. Subspace Blind Channel Estimation…………….………………………...50
4.3. Performance enhance………………………….………………..…………54
4.3.1 Forward-Backward averaging technique………………..…….…...54
4.3.2 Block matrix scheme for SS method………………………………54
4.4. Symbols Detection……………………………………………………...…56
4.5. Simulations………………………………………………………………...57
5 Conclusion…………………………………………………………68
References...…………………………………………………………….69
Appendix A………………..…………………………………………....75
[1]C. Li and S. Roy, “A Subspace Blind Channel Estimation method for OFDM Systems without Cyclic Prefix,” IEEE Trans. Wireless Commun., vol. 1, pp. 572-579, Oct. 2002.
[2]X. Yue and H. H. Fan., “Linear Smoothing Method for Blind Equalization of OFDM Systems without Cyclic Prefix,” in Proc. IEEE Commun. Network Conf., vol. 4, pp. 2313-2316, Mar. 2004.
[3]J. M. Mendel, Lessons in Estimation Theory for signal Processing Communications, and Control, Prentice Hall PTR, pp. 173-188, 1995.
[4]J. A. C. Bingham, “Multicarrier modulations for data transmission: An idea whose time has com,” IEEE Commun. Mag. vol. 28, pp. 5-14, May 1990.
[5]W. Y. Zou and Y. Wu, “COFDM: An overview,” IEEE Trans. Broadcasting, vol. 41, pp. 1-8, Mar. 1995.
[6]ANSI, “American national standard for telecommunications-Network and customer installation interfaces-Asymmetric digital subscriber line (ADSL) metallic interface,” ANSI, New York, Tech. Rep. ANSIT1.413 1995, J. A. C. Bingham, Ed. Aug. 1995.
[7]European Telecommunications Standards Institute, “Broadband radio access networks (BRAN); HIPERLAN type 2; Physical (PHY) layer,” Valbonne, France, TR 101 405 V.1.1.1, Apr. 2000.
[8]L. J. Cimini, Jr., “Performance studies for high-speed indoor wireless communications,” Wireless Pers. Commun. vol. 2, no. 1-2, pp. 67-85, 1995.
[9]C. Li and S. Roy, “Subspace-based blind channel estimation for OFDM by exploiting virtual carriers,” IEEE Trans. Wireless Commun., vol. 2, pp. 141-150, Jan. 2003.
[10]C. Wang and Z. Zhou, “A new detection algorithm for OFDM system without cyclic prefix,” IEEE Mobile and Wireless Comm., vol. 2, pp. 453-45, June. 2004.
[11]S. Chen and C. Zhu, “ICI and ISI analysis and mitigation for OFDM systems with insufficient cyclic prefix in time-varying channels,” IEEE Trans. Wireless Commun., vol. 50, pp. 78-83, Feb. 2004.
[12]C. J. Park and G. H. Lm, “Efficient DMT/OFDM transmission with insufficient cyclic prefix,” IEEE Trans. Wireless Commun., vol. 8, pp. 576-578, Sept. 2004.
[13]C. Shin and E.J Powers, “Blind channel estimation for MIMO-OFDM systems using virtual carriers,” IEEE Global Telecommunications Conference, vol. 4, pp. 2465-2469, Nov. 2004.
[14]X. Wang, P. Ho and Y. Wu, “Robust channel estimation and ISI cancellation for OFDM systems with suppressed features,” IEEE Trans. Wireless Commun., vol. 23, pp. 963-972, May 2005.
[15]B. Muquet, Z. Wang, G. B. Giannakis, M. D. Courville, and P. Duhamel, “Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?,” IEEE Trans. Wireless Commun., vol. 50, pp. 2163-2148, Nov. 2002.
[16]H. Bolcskei, R.W. Heath, Jr., and A.J. Paulraj, “Blind channel identification and equalization in OFDM-based multiantenna systems,” IEEE Trans. Wireless Commun., vol. 50, pp. 96-109, Jan. 2002.
[17]Y. Zeng and T. S. Ng, “A semi-blind channel estimation method for multiuser multiantenna OFDM systems,” IEEE Trans. Signal processing, vol. 52, pp. 1419-1429, May 2004.
[18]C.J. Park and G. H. Im, “Efficient cyclic prefix reconstruction for coded OFDM systems,” IEEE Trans. Wireless Commun., vol. 8, pp. 274-276, May 2004.
[19]T.C Hewavithana and D.M. Brookes, “Blind adaptive channel equalization for OFDM using the cyclic prefix data,” IEEE Global Telecommunications Conference, vol. 4, pp. 2376-2380, Nov. 2004.
[20]C.R.N. Athaudage and A.D.S. Jayalath, “Delay-spread estimation using cyclic-prefix in wireless OFDM systems,” IEE Proc. Commun., vol. 4, pp. IV - 668-71, April 2003.
[21]V.G.S. Prasad and K.V.S. Hari, “Interleaved orthogonal frequency division multiplexing (IOFDM) system,” IEEE Trans. Signal processing, vol. 52, pp. 1711-1721, June 2004.
[22]H.C. Won and G.H. Im, “Iterative cyclic prefix reconstruction and channel estimation for a STBC OFDM system,” IEEE Trans. Wireless Commun., vol. 9, pp. 307-309, April 2005.
[23]R.W. Heath, Jr. and B. Giannakis, “Exploiting input cyclostationarity for blind channel identification in OFDM systems,” IEEE Trans. Signal processing, vol. 47 , pp. 848-856, Mar. 1999.
[24]X. Cai and A.N. Akansu, “A subspace method for blind channel identification in OFDM systems,” in Proc. ICC2000, pp. 929-933, 2000.
[25]H. Ali, A. Doucet and Y. Hua, “Blind SOS subspace channel estimation and equalization techniques exploiting spatial diversity in OFDM systems,” Digital Signal Processing, vol. 14, no. 2, pp. 171-202, March 2004.
[26]H. Ali, J.H Manton and Y. Hua, “A SOS subspace method for blind channel identification and equalization in bandwidth efficient OFDM systems based on receive antenna diversity,” in Proc. SSAP, Singapore, pp. 401-404, Aug. 2001.
[27]G. Leus and M. Moonen, “Per-tone equalization for MIMO OFDM systems,” IEEE Trans. Signal processing, vol. 51, no. 11, pp. 2965-2975, Nov. 2003.
[28]H. Bolcskei R.W. Heath, Jr. and A.J. Paulraj, “Blind channel identification and equalization in OFDM-based multiantenna systems,” IEEE Trans. Signal processing, vol. 50, no.1, pp. 96-109, Jan. 2002.
[29]Y. Zeng amd T.S. Ng, “A semi-blind channel estimation method for multiuser multiantenna OFDM systems,” IEEE Trans. Signal processing, vol. 52, no. 5, pp. 1419-1429, May 2004.
[30]V. Tarokh, H. Jafakhani and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEE Tran. Inform. Theory, vol. 45, pp. 1456-1467, July 1999.
[31]M. Uysal. N. Al-Dahahir and C. N. Georghiads, “A space-time block-coded OFDM scheme for unknown frequency-selective fading channels,” IEEE Commun., vol. 5, no. 10, pp. 393-395, Oct. 2001.
[32]H. C. Won and G. H. Im, “Iterative cyclic prefix reconstruction and channel estimation for a STBC OFDM system,” IEEE Commun., vol. 9, no. 4, pp. 307-309, April 2005.
[33]B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading,” IEEE Tran. Inform. Theory, vol. 46, pp. 543-564, Mar. 2004.
[34]S. N. Diggavi, N. Al-Dhahir, A. Stamoulis and A. R. Calderbank, “Differential space-time coding for frequency-selective channels,” IEEE Commun., vol. 6, no. 6, pp. 253-255, June 2002.
[35]H. Boelcskei and A. J. Paulraj, “Space-frequency coded broadband OFDM system,” in Proc. IEEE Commun. Network Conf., pp. 1- 6, 2000.
[36]H. L. Van Trees, Optimum array processing, Part IV of detection, estimation, and modulation theory, John Wiley& Sons, Inc. New York, 2002.
[37]S. M. Alamouti. “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[38]T. Ojanpera and R. Prasad, “An overview of air interface multiple access for IMT-2000/UMTS,” IEEE Commun. Magn., vol. 36, no. 9, pp. 82-86, Sept. 1998.
[39]W. Sun, H. Li and M. Amin, “MMSE detection for space-time coded MC-CDMA,” IEEE International Conference on Commun., vol. 5, pp. 3452-3456, May 2003.
[40]Y. Zeng and T.S. Ng, “Subspace-based semi-blind channel estimation for STC-OFDM,” IEEE Commun., vol. 4, pp. 2422-2426, June 2004.
[41]G. Ren, H. Zhang and Y. Chang, “A novel scheme for space-time block coding with a variable transmit diversity gain in OFDM systems,” IEEE Tran. On Consumer Elect., vol. 50, no. 2, pp. 478-483, May 2004.
[42]Y. You, M. J. Kim, S. K. Hong, I. Hwang and H. Song, “Performance investigation of STBC-OFDM with code-division multiplexing in time-varying channels,” IEEE Tran. Broadcast. vol. 50, no. 4, pp. 408-413, Dec. 2004.
[43]R. Bachl, “The Forward-Backward averaging Technique applied to TLS-ESPRIT processing,” IEEE Trans. Signal processing, vol. 43, no. 11, pp. 2961-2699, Nov. 1995.
[44]R. Prasad, OFDM for Wireless Communications Systems, Boston & London, Artech House, Inc. 2004.
[45]J.L. Yu and I.T. Lee, “MIMO Capon Receiver and Channel Estimation for Space –Time Coded CDMA systems,” to appear in IEEE Trans. Wireless Commun 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊