跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳銘滄
研究生(外文):Ming-Chang Chen
論文名稱:使用直接適應性模糊類神經控制器於防鎖死煞車系統之動態滑差估測與控制
論文名稱(外文):Dynamic Slip Ratio Estimation and Control of Antilock Braking Systems Using an Observer-Based Direct Adaptive Fuzzy-Neural Controller
指導教授:王偉彥王偉彥引用關係
指導教授(外文):Wei-Yen Wang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:71
中文關鍵詞:路面估測器防鎖死煞車系統直接適應性模糊類神經控制器
外文關鍵詞:road estimatorsantilock braking systemsobserver-based direct adaptive fuzzy-neural controller
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1124
  • 評分評分:
  • 下載下載:825
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中提出一種方法使車輛在未知路面行駛時,可藉由防鎖死煞車系統(ABS)達到最短煞車時間。為了達到此目的,我們導入含路面變數之動態摩擦力方程式(LuGre Model)。基於路面與滑差的關係,我們定義一個從路面變數至最佳參考滑差之映射函數,並藉由模糊類神經網路及順向類神經網路來學習。滑差控制器被設計來使車輛的滑差追踪最佳參考滑差值以達到最短煞車時間的目的。另一方面,我們同時考慮輪子轉速與路面狀況並且定義一三維之映射函數使得車子可隨著不同轉速及不同路面來改變滑差值以達到縮短煞車時間的目的。在控制器設計方面,我們結合模糊類神經理論與直接式適應性理論來設計防鎖死煞車系統的控制器。控制策略是利用防鎖死煞車系統控制器控制車輛的滑差並追蹤由路面估測器所估測到的不同路面的最佳滑差率。由模擬結果驗證,路面估測器結合所設計出來的防鎖死煞車控制器,對於未知的路面具有良好的估測能力,而且控制器也具有良好的追蹤能力。
This paper proposes an antilock braking system (ABS), in which unknown road characteristics are resolved by a road estimator. This estimator is based on the LuGre friction model with a road condition parameter, and can transmit a reference slip ratio to a slip ratio controller through a mapping function. A feedforward neural networks using back-propagation learning algorithm is used to identify the mapping function from road characteristics to reference slip ratios. Besides, we further adopt a wheel velocity and the road condition parameter to be the inputs of three dimension mapping function to reduce braking time. The slip ratio controller is used to maintain the slip ratio of the wheel at the reference values for various road surfaces. In the controller design, an observer-based direct adaptive fuzzy-neural controller (DAFC) for an ABS is developed to on-line tune the weighting factors of the controller under the assumption that only the wheel slip ratio is available. Finally, this paper gives simulation results to provide good effectiveness under varying road conditions.
中文摘要……………………………………………………………………….. i
英文摘要……………………………………………………………………….. ii
誌謝 ……………………………………………………………………….. iii
目錄 ……………………………………………………………………….. iv
表目錄 ….………………………………………………………………….… vi
圖目錄 ………………………………………………………………………… vii
第一章 緒論......………………………………………………………………… 1
1.1研究背景……………………………………………………………….. 1
1.2文獻回顧……………………………………………………………….. 2
1.3研究方法與本文架構………………………………………………….. 2
第二章 防鎖死煞車系統之數學模式建立…………………………………….. 4
2.1摩擦力模型…………………………………………………………….. 4
2.2 摩擦力與滑差的關係…………………………………………………. 6
2.3影響摩擦力的各種因素……………………………………………….. 8
2.3.1不同路面對摩擦力的影響………………………………………. 8
2.3.2不同煞車的輪胎轉速對摩擦力的影響…………………………. 9
2.3.3不同側滑角對抓地力的影響……………………………………. 9
2.4單輪車體之動態等效模型…………………………………………….. 11
2.5液壓系統之動態等效模型…………………………………………….. 13
2.6 設計二階動態滑差的數學模式………………….………………….... 15
第三章 路面估測器設計……………………………………………………….. 16
3.1動態摩擦力模型(LuGre Friction Model)…………...…………………. 16
3.2估測器設計…………………………………………………………….. 18
3.3估測器的應用………………………………………………………..… 22
第四章 直接適應性模糊類神經控制器設計………………………………….. 25
4.1基於估測器之直接適應性模糊類神經控制器……………………….. 25
4.1.1適應性模糊控制…………………………………………………. 25
4.1.2模糊類神經網路…………………………………………………. 26
4.2防鎖死煞車系統控制器設計………………………………………….. 27
第五章 基於不同路面狀況之ABS控制系統設計 ………………………….. 35
5.1系統分析……………………………………………………………….. 35
5.2使用模糊類神經網路學習法則得到最佳的滑差 …………………… 36
5.2.1最佳參考滑差設計 ………………………………………………. 36
5.2.2 模糊類神經……………………………………………………….. 39
5.2.3 模擬與討論……………………………………………………….. 40
第六章 基於不同轉速及不同路面之最佳滑差設計………………………....... 52
6.1 由轉速來到最佳的滑差值…………………………………………….. 52
6.2 使用到傳遞學習法得到最佳的滑差………………………………….. 53
6.3 模擬與討論…………………………………………………………….. 56
6.4 考慮不同煞車方法的比較 …………………………………………… 67
第七章 結論與未來展望 ………………………………………………………. 68
參考文獻 ………………………………………………………………………... 69
參考文獻
[1] C. Canudas-De-Wit, Morten Lind Petersen and Anton Shiriaev “A New Nonlinear Observers for tire/road Distributed friction,” Proceedings of the 38th Decision & control Conference, Phoenix, Hawail USA, December 2003.
[2] C. Canudas-De-Wit, P. Tsiotras, E. Velenis, M. Basset, and G. Gissinger, “Dynamic Friction Models for Road/Tire Longitudinal Interaction,” Vehicle System Dynamics, pp. 1-23, Oct. 14, 2002.
[3] C. Canudas-De-Wit and R. Horowitz, “Observers for tire/road contact friction using only wheel angular velocity information,” Proceedings of the 35th Decision & control Conference, Phoenix, Arizona USA, December 1999.
[4] T. Kawabe, M. Nakazawa, I. Nostu and Y. Watanbe, “Sliding mode control for anti-lock brake system: Usage of sluggish actuators,” Procedings of the 35th Conference on Decision and Control, Kobe, Japen, December 1995.
[5] Mauer, G. F., “A Fuzzy Logic Controller for and Abs Braking System,” IEEE Trans. On Fuzzy systems, vol. 3, no. 4, pp. 381-388, 1995.
[6] Y. Lee and S, H, Zak, “Genetic neural fuzzy control of anti-lock brake systems,” Proceedings of the American Control Conference, Arlington VA, June 25-27, 2001.
[7] L. A. Zadeh, “Fuzzy sets.,” Inform and Control, vol. 8, pp. 338-353, 1965.
[8] P. J. King and E.H. Mamdani, “Applications of fuzzy algorithms for control of simple dynamic plants,” vol. 121, pp. 1585-1588, 1974.
[9] Soo Yeong Yi, Myung Jin Chung, “Robustness of fuzzy logic control for an uncertain dynamic system,” IEEE Trans. on Fuzzy Systems, vol. 6, no. 2, pp. 216-225, May 1998.
[10] Drakunov, S. ,Dix, P. ,Ashrafi, B. “ABS Control Using Optimum Search via Sliding Modes,”IEEE transaction on control systems technology, vol. 3, no. 1 March 1995.
[11] Mauer, G. F., “A Fuzzy Logic Controller for and Abs Braking System,” IEEE Trans. On Fuzzy systems., vol. 3, no. 4, pp. 381-388, 1995.
[12] Layne, J. R., Passino, K.M., and Yurkovich, S., “Fuzzy Learning Control For Anti-skid Braking System,” IEEE Trans. On control systems technology., vol. 1, no. 2, pp. 122-129, 1993.

[13] 應繼華,「應用遺傳演算法與模糊滑動模式於防鎖煞車系統設計之研究」,國立成功大學電機工程所碩士論文, 2000。
[14] 李連春,「液壓防止鎖死煞車系統控制器設計之研究」,國立成功大學碩士論文, 1997。
[15] 許旭邦,「防鎖死煞車系統之路面估測與滑差制」,天主教輔仁大學電子工程研究所碩士論文, 2005。
[16] 陳冠銘,「智慧型防鎖死煞車系統控制」,天主教輔仁大學電子工程研究所碩士論文, 2003。
[17] Karnopp, D., ”Computer Simulation of Stick-slip Friction in Mechanical Dynamic System,” Transactions of the ASME Journal of Dynamic Systems, Measurement and Control, vol. 107, pp. 100-103, 1985.
[18] Armstrong. B. , Control of Machines with Friction, Klumwe Academic Publishers, 1991.
[19] Canudas de Wit C., “A new model for control systems with friction,” IEEE Transactions on Automatic Control, vol. 40, no. 3, March 1995, pp. 419-425.
[20] Harned, J. L., Johnston, L.E., Scharp, G. ”Measurement of Tire Brake Force Characteristics As Related To Wheel Slip (Antilock) Control System Design,” SAE Paper, no. 69214.
[21] B. R. Lee and K. H. Sin, “Slip-Ratio control of ABS using sliding mode control,” Proceedings of the 4th Korea-Russia International Symposium on Science and Tech, vol. 3, pp. 72-77, 2000.
[22] 朱賢明,「汽車油壓煞車系統之性能分析與實驗之研究」, 國立成功大學機械工程研究所碩士論文, 1995。
[23] 王毓麒,「防鎖死煞車系統之控制與實作」, 大葉工學院碩士論文, 1996。
[24] H.E. Merritt, Hydraulic control system, New York:Wiley, 1967.
[25] Canudas de Wit, Carlos and Roberto Horowitzm, “Observers for Tire/Road Contact Friction using only wheel angular velocity information,” Proceedings of 38th IEEE Conference of Decision and Control. Phoenix, AZ, 1999.
[26] Canudas de Wit, and P. Tsiotras, “Dynamic tire friction models for vehicle traction control,” In 38th IEE-CDC 1999.
[27] Bakker, E., Nyborg, L. and Pacejka, H. “Tire Modelling for Using in Vehicle Dynamic Studies,” Society of Automotive Engineers Paper #870421, 1987.
[28] Canudas de Wit, C., R, Horowitz, R. and P, Tsiotras, “Model-Based Observers for Tire/Road Contact Friction Prediction,” In New Directions in Nonlinear Observer Design, Nijmeijer, H. and T. I Fossen (Eds), Springer Verlag, Lectures Notes in Control and Information Science, May 1999.
[29] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, no. 2, pp. 359-366, 1989.
[30] L.X. Wang and J.M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least squares learning," IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 807-814, 1992.
[31] Y. G. Leu, T. T. Lee, and W. Y. Wang, “Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems,” IEEE Trans. Syst. Nan, Cyber. Part B, vol. 29, no. 5, pp. 583-591, Oct. 1999.
[32] Y. G. Leu, W. Y. Wang, and T. T. Lee, “Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems,” IEEE Trans. on Neural Networks, vol. 16, no. 4, pp. 853-861, 2005.
[33] Proceedings of the Institution of Mechanical Engineers, “Traction control and anti-wheel-spin systems for road vehicles,” IMechE Conference, London, Sept. 1988.
[34] J. W. Douglas and T. C. Schafer, “The Chrysler sure brake: The first production four-wheel anti-skid system,” SAE Tech. Paper #710248, 1971.
[35] W. Y. Wang, G. M. Chen, C.W. Tao, “Stable anti-lock braking system using output-feedback direct fuzzy neural control,” IEEE International Conference Systems, Man and Cybernetics, pp. 3675-3680, Oct. 2003.
[36] T. Bachmann, “The importance of the integration of road, and vehicle technologies,” in Proc. FISITA 20th World Congress, 1955.
[37] B. Breuler, U. Eichhorn, and J. Roth, “Measurement of tyre/road friction ahead of the car and inside the tyre,” in Proc.92 Int. Symp. Advanced Vehicle control (AVEC), 1992, pp. 347-353.
[38] 林大煜,「車輛安全配備-ABS 防鎖死煞車系統之效用評估」,交通部運輸研究所, 1997。
[39] Chin-Teng Lin and C.S.George Lee, Neural Fuzzy System, NJ:Prentice-Hall,1999.
[40]羅華強,類神經網路-MATLAB的應用,高立圖書有限公司, 2004。
[41] Th. Culliere, A. Titli and J.M.Corrieu, “Neural-fuzzy modeling of nonlinear systems for control purpose,” Proceedings of 1995 IEEE international Conference on Fuzzy systems and The second International Fuzzy Engineering Symposium.
[42] I-Hsum Li, Wei-Yen Wang, Shun-Feng Su and Ming-Chang Chen, “Observer Based Adaptive Fuzzy-Neural Controller Using A Merged Fuzzy-Neural Network, ”accepted to present in IEEE International Conference on Systems, Man, and Cybernetics, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top