跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 05:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯易斌
研究生(外文):Yi-Pin Ko
論文名稱:微控制晶片於鋰離子串接電池等化之應用
論文名稱(外文):Micro-Controller Unit Application for Series Connected Lithium-Ion Batteries Equalization
指導教授:李永勳
指導教授(外文):Yuang-Shung Lee
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:102
中文關鍵詞:電池等化鋰離子電池準共振零電流轉換器雙向邱克轉換器微控制晶片模糊邏輯控制器
外文關鍵詞:Battery EqualizerLithium-Ion BatteryQRZCSBi-directional CUK-converterMicro-controller unitFuzzy logic controlled
相關次數:
  • 被引用被引用:13
  • 點閱點閱:505
  • 評分評分:
  • 下載下載:149
  • 收藏至我的研究室書目清單書目收藏:0
自從鋰離子電池問世以來,便以優越性能被廣泛使用。然而,有許多的電子產品及設備需以串接成高電壓方式進行供電。為了確保電池串的使用壽命、最大電能以及單元電池的保護,因此本文針對串接鋰離子電池組的等化技術,提出以單一微控制晶片實現電池等化控制系統,使用雙向邱克轉換器及準共振零電流轉換器模擬及實際驗證此等化晶片可有效的均衡單元電池電壓,為了縮減等化時間,並加入模糊邏輯控制器增加整體性能。以市場上常見的八位元微控制晶片實現等化器,不僅使電池等化控制器系統體積縮小,也因使用單一微控制晶片,讓系統架構更簡單。
Since Lithium-Ion Battery was presented to public, it has been used extensively for its superior performance. However, many electronic products and equipment must be serially connected in the high-voltage fashion to supply power. The paper presents a battery equalization controller system by using a single micro-controller unit system to ensure that the battery string can provide the bigger electric energy and operate in the safety region of Lithium-ion battery string. We also use a bi-directional converter and QRZCS converter to design the battery equalizer. Simulation and experimental results actually verify that the Micro-controller unit based battery equalized battery equalizer can balance the cell voltage effectively. In order to reduce the equalizing time, we embedded Fuzzy logic controlled to enhance integral performance. In this article, we use an 8-bit Micro-controller unit to accomplish battery equalizer, which can reduce the volume of battery equalization controller system.
中文摘要...............................................................................................................i
英文摘要..............................................................................................................ii
誌謝....................................................................................................................iii
目錄.................................................................................................................... iv
表目錄..................................................................................................................v
圖目錄................................................................................................................. vi
第一章 序論......................................................................................................1
1.1 前言.....................................................................................................1
1.2 研究動機.............................................................................................1
1.3 電池的介紹..........................................................................................2
1.4 電池等化器..........................................................................................3
1.5 模糊控制電池等化器..........................................................................4
1.6 研究內容.............................................................................................4
第二章 串接鋰離子電池的保護與特性............................................................6
2.1 前言.....................................................................................................6
2.2 鋰離子電池特性..................................................................................7
2.3 鋰離子電池的保護..............................................................................8
2.4 本章結論.............................................................................................9
第三章 各種電池等化器及柔性切換技術介紹..............................................10
3.1 前言...................................................................................................10
3.2 消耗型電池等化器............................................................................11
3.3 非消耗型電池等化器........................................................................12
3.3.1 升壓型轉換器.........................................................................12
3.3.2 切換電容式開關等化電路......................................................13
3.3.3 諧振型電池等化.....................................................................14
3.3.4 雙向直流轉換器電池等化......................................................15
3.3.5 集中式變壓器電池等化..........................................................16
3.3.6 改良式雙向邱克轉換器等化電路..........................................17
3.3.7 改良式雙向準共振零電流等化電路......................................18
3.4 柔性切換技術....................................................................................18
3.5 本章結論...........................................................................................19
第四章 改良式電池等化器動作原理分析......................................................20
4.1 前言...................................................................................................20
4.2 改良式雙向邱克等化器的介紹與動作原理......................................21
4.2.1 電感電流連續模式電池等化..................................................22
4.2.2 零電流切換模式電池等化......................................................26
4.2.3 零電壓切換模式電池等化......................................................31
4.3 改良式準共振零電流切換介紹與動作原理......................................37
4.3.1 第j顆個別電池充電容量大於第j+1顆個別電池.................38
4.3.2 第j+1顆個別電池充電容量大於第j顆個別電池................. 43
4.4 本章結論...........................................................................................49
第五章 模糊邏輯控制等化器.........................................................................50
5.1 前言...................................................................................................50
5.2 模糊邏輯控制原理............................................................................51
5.2.1 模糊化(Fuzzifier) ....................................................................52
5.2.2 規則庫(Rule Base)及模糊推論(Fuzzy Inference Engine)........52
5.2.3 解模糊化(Defuzzifier).............................................................54
5.3 模糊邏輯控制電池等化器設計.........................................................54
5.3.1 模糊化設計.............................................................................55
5.3.2 模糊規則及模糊推論設計......................................................60
5.3.3 解模糊化設計.........................................................................65
5.4 本章結論...........................................................................................66
第六章 微控制晶片之電池等化器硬體電路實現與實驗結果.......................68
6.1 前言...................................................................................................68
6.2 電池等化器硬體架構........................................................................68
6.2.1 電池等化控制單晶片..............................................................68
6.2.2 電池等化控制單晶片設計流程..............................................72
6.2.3 電池等化器之等化條件..........................................................74
6.2.4 電池等化器線路設計..............................................................78
6.3 Fuzzy Table 的建立..........................................................................85
6.4 實驗結果...........................................................................................88
6.4.1 改良式零電流準共振模擬與實驗..........................................88
6.4.2 改良式雙向邱克等化電路模擬與實驗...................................92
6.5 本章結論...........................................................................................96
第七章 結論與未來展望.................................................................................97
7.1 結論...................................................................................................97
7.2 未來展望...........................................................................................97
參考文獻............................................................................................................99
[1]S.T. Tung, D.C.Hopkins, and C.R.Mosling, 「Extension of Battery LIFe via Charge Equalization,」 IEEE Transactions on Industrial Electronics, vol. 40, pp. 96-104, Feb.1993.
[2]S.T. Tung, D.C.Hopkins, and C.R.Mosling, 「The Use of Equalizing Converter For Serial Charging of Long Battery Strings,」 Applied Power Electronics Conference and Exposition, pp. 493-498, 1991.
[3]李世興,電池活用手冊,全華科技圖書股份有限公司,第2-3頁,1997。
[4]李文雄, 「鋰電池E世代的能源」 ,科學發展專刊,第362期,第32-35頁,2003。
[5]M. Broussely, M. Perelle, J. McDowall, G. Sarre, and J. Martaeng, 「Lithium Ion: The Next Generation of Long Life Batteries - Characteristics, Life Predictions, and Integration into Telecommunication System,」 Telecommunications Energy Conference, pp. 194-201, 2000.
[6]N.H. Kutkut, 「A Modular Non Dissipative Current Diverter For EV Battery Charge Equalization,」 Applied Power Electronics Conference and Exposition, vol. 2, pp. 686-690, 1998.
[7]N.H. Kutkut, and D.M. Divan, 「Dynamic Equalization Techniques For series Battery Stacks,」 Telecommunications Energy Conference, pp. 514-521, 1996.
[8]N.H. Kutkut, D.M. Divan, and D.W. Novotny, 「Charge Equalization For Series Connected Battery Strings,」 IEEE IAS Annual Meeting, pp. 1008-1015, October 1994.
[9]Mohan, 」Power Electronics,」 wiley, 1994.
[10]F.L. Luo, 「Positive Output Luo-Converters: Voltage Lift Technique,」 IEE-EPA Proceedings, vol. 146, no. 4, pp. 415-432, July 1999.
[11]F.L. Luo, 「Nrgative Output Luo-Converters: Voltage Lift Technique,」 IEE-EPA Proceedings, vol. 146, no. 2, pp. 208-224, March 1999.
[12]F.L. Luo, 「Double Output Luo-Converters, Advanced Voltage Lift Technique,」 IEE-EPA Proceedings, vol. 147, no. 6, pp. 469-485, November 2000.
[13]K.H. Liu, and F.C. Lee, 「Zero-Voltage Switching Techniques in DC/DC Converter Circuits,」 PESC Record, pp. 58-70, 1986.
[14]K.H. Liu, and F.C. Lee, 「Zero-Current Switching Techniques in DC/DC Converter Circuits,」 PESC Record, pp. 58-70, 1986.
[15]Y.S. Lee, and G.T. Chen, 「ZCS Bi-directional DC-to-DC Converter Application
in Battery Equalization for Electric Vehicle,」 The 35th Annual IEEE Power
Electronics Specialists Conference, pp. 2766-2772, June 2004.
[16]Panasonic Batteries Handbook 2000.
[17]Mo-Hua Yang, Cheng-Hsing Hsieh and Bing-Ming Lin, 「Development of Li-ion Battery for Electric Bike Application,」 Electric Vehicle Syposium-18, Berlin, Germany, 2001.
[18]F. L Luo, Y. Hong and M. H. Rashid,」 Four Quadrant Operating Luo-Converters,」
Power Electronics and Motion Control Conference, PIEMC 2000. The Third
International, vol. 3, pp. 1132-1137, 2000.
[19]C. Pascual, and P.T. Krein, 「Switched Capacitor System For Automatic Series Battery Equalization,」 Applied Power Electronics Conference and Exposition, vol. 2, pp. 848-854, 1997.
[20]M.J. Isaacson, and R.P. Hollandsworth, P.J. Giampaoli, F.A. Linkowsky, A. Salim, and V.L. Teofilo, 「Advanced lithium ion battery charger,」 Battery Conference on Applications and Advances, pp. 193-198, 2000.
[21]N.H. Kutkut, 「Non-Dissipative Current Diverter using A Centralized Multi-Winding Transformer,」 Power Electronics Specialists Conference, vol. 1, pp. 648-654, 1997.
[22]K. Nishijima, H. Sakamoto, K. Harada, 「A PWM Controlled Simple and High Performance Battery Balancing System,」 Power Electronics Specialists Conference, vol. 1, pp. 517-520, 2000.
[23]M. Broussely, M. Perelle, J. McDowall, G. Sarre, and J. Martaeng, 「Lithium Ion: The Next Generation of Long Life Batteries - Characteristics, Life Predictions, and Integration into Telecommunication System,」 Telecommunications Energy Conference, pp. 194-201, 2000.
[24]Chin-Teng Lin and C.S. George Lee, 「Neural Fuzzy System,」 Prentice Hall International, Inc. pp. 142-176.
[25]謝冠群、陳良瑞、黃國順和陳榮昇,「以模糊控制為基礎的鋰離子電池快速充電器」,第二十屆電力研討會,第320-324頁,2000。
[26]Guan-chyun Hsieh, Liang-Rui Chen, and Kuo-Shun Huang, 「Fuzzy Controlled Li-Ion Battery Charge System with Active State-of-charge Controller, 「IEEE Transactions on Industrial Electronics, vol. 48, no.3, pp. 585-593, June 2001.
[27]P.Singh, J. Rajagopalan, R. Lafollette, C. Fennie and D. Reisner, 」Fuzzy Logic-Based Solar Charge Controller for Microbatteries,」 Photovoltaic Specialists Conference Record of the Twenty-Eighth IEEE, pp. 1726-1729, 2000.
[28]P.Singh, J. Rajagopalan, R. Lafollette, C. Fennie and D. Reisner, 「Fuzzy Logic-Based Micro Power Supply For MEMS Applications,」 Applications and Advances. The Sixteenth Annual Battery Conference, pp. 355-357, 2001.
[29]Yu Qin and Shanshan Du, 「A Practical and Low Cost PWM Battery Charger Using Fuzzy Logic Control For UPS Application,「 Telecommunications Energy Conference, 16th International, pp. 443-450, 1994.
[30]G.E.M.D.C.Bandara, Ratcho Ivanov and Stoyan Gishin, 「Intelligent Fuzzy Controller for a Lead-Acid Battery Charger,」 IEEE International Conference, vol. 6, pp. 185-189, 1999.
[31]G.E.M.D.C.Bandara, Ratcho Ivanov and Stoyan Gishin, 「Fuzzy Control of a Universal Battery Charger,」 Fuzzy Information Processing Society, NAFIPS. 18th International Conference of the North American, pp. 844-848, 1999.
[32]華志強、蔡俊偉,「模糊控制三態充電器之設計與製作」,電子月刊,第八卷,第六期,第174-182頁,2002。
[33]Zafar Ullah, Brian Burford and Dilip S, 「Fast Intelligent Battery Charging Neural-Fuzzy Approach,」 IEEE AES Systems Magazine, pp. 26-29, June 1996.
[34]Patricia Melin and Oscar Castillo, 「Intelligent Control of Complex Electrochemical System With a Neuro-Fuzzy-Genetic Approach,」 IEEE Transaction on Industrial Electronics, vol. 48, no. 5, pp. 951-955, October 2001.
[35]Kyu-Chan Lee, and Bo Hyung Cho, 「Design and Analysis of Automotive High Intensity Discharge Lamp Ballast Using Micro Controller Unit,「 IEEE Transactions on Power Electronics, pp. 1356-1364, 2003.
[36]「SONIX 8-Bit Micro-Controller SN8P2711 USER』S MANUAL,」 http://www.sonix.com.tw, SONIX TECHNOLOGY CO.,LTD.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top