跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳思翰
研究生(外文):Szu-Han Chen
論文名稱:具有輸入/輸出無漣波電流之模糊邏輯鋰離子電池等化控制器
論文名稱(外文):Fuzzy Logic Controlled Lithium-Ion Battery Equalization Controller Using Zero-Ripple Switching Operation
指導教授:李永勳
指導教授(外文):Yuang-Shung Lee
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:96
中文關鍵詞:改良型零漣波邱克轉換器個別電池等化器模糊邏輯電池等化控制器狀態空間近似法微控制晶片
外文關鍵詞:An Improved Topology of Zero Ripple Cûk ConverterIndividual Cell Equalization (ICE)Fuzzy Logic Control Battery Equalization Controller (FLC-BEC)State Space ApproachMicro-Controller Unit (MCU)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:470
  • 評分評分:
  • 下載下載:152
  • 收藏至我的研究室書目清單書目收藏:0
基於模糊邏輯控制的智慧型電池等化方式適合用來設計模糊邏輯電池等化控制器,如此將可有效地減少等化所需的時間。本篇論文提出改良自邱克轉換器的改良型零漣波邱克轉換器電路來作為個別電池等化器的基本架構,其中輸出與輸入無漣波電流產生,可有效地降低電磁干擾(EMI)問題,確保電池等化器可正常運作。此外,狀態空間近似法可用來幫助我們檢查模糊邏輯電池等化控制器的穩定度;藉由Matlab/Simulink模擬與硬體電路實驗的結果可以驗證我們所設計的模糊邏輯電池等化控制器是穩定的。本篇論文並以市場上常見的八位元微控制晶片來實現模糊邏輯電池等化控制器,如此不僅可使系統體積縮小,也因為使用單一微控制晶片,可讓系統架構更為簡單。
An intelligent battery equalization scheme based on fuzzy logic control (FLC) is presented to adaptively design the proposed fuzzy logic control battery equalization controller (FLC-BEC). Consequently, it can effectively reduce the equalization time. The proposed individual cell equalization (ICE) scheme is an improved topology of zero ripple Cûk converter. The purpose of ripple free input and output current not only can reduce the conducted electromagnetic interference (EMI), but also can maintain safe operation for the circuit topology. A state space approach is adopted to inspect the stability of the proposed FLC-BEC. Matlab/Simulink simulation and experimental results can be used to verify the stability of FLC-BEC. In this article, an 8-bit micro-controller unit (MCU) is used to accomplish the FLC-BEC, which can reduce volume and complexity of the hardware used for the FLC-BEC.
中文摘要.........................................................................................................................i
英文摘要........................................................................................................................ii
誌謝...............................................................................................................................iii
目錄...............................................................................................................................iv
表目錄...........................................................................................................................vi
圖目錄..........................................................................................................................vii
第一章 緒論................................................................................................................1
1.1前言..................................................................................................................1
1.2研究動機與目的........................................................................................2
1.3章節內容說明..................................................................................................3
第二章 個別電池等化器之原理與架構....................................................................4
2.1前言..................................................................................................................4
2.2傳統邱克直流對直流轉換器..........................................................................4
2.2.1傳統邱克直流對直流轉換器之架構...................................................4
2.2.2輸出或輸入無漣波電流之條件...........................................................7
2.2.3 Pspice模擬輸出或輸入無漣波電流之結果........................................8
2.3隔離式邱克直流對直流轉換器....................................................................14
2.3.1隔離式邱克直流對直流轉換器之架構.............................................14
2.3.2輸出暨輸入無漣波電流之條件.........................................................14
2.3.3 Pspice模擬輸出暨輸入無漣波電流之結果......................................19
2.4改良型無漣波邱克直流對直流轉換器........................................................21
2.4.1改良型無漣波邱克直流對直流轉換器之架構.................................21
2.4.2輸出暨輸入無漣波電流之條件.........................................................22
2.4.3 Pspice模擬輸出暨輸入無漣波電流之結果......................................26
2.5隔離式與改良型無漣波邱克直流對直流轉換器的靈敏度比較................30
2.6改良型無漣波邱克直流對直流轉換器在電池等化上的應用....................33
2.6.1個別電池等化器之架構與動作原理.................................................33
2.6.2 Pspice模擬電池等化之結果..............................................................35
2.7結語..………………….……..……...............................................................38
第三章 模糊邏輯電池等化控制器的設計..............................................................39
3.1前言................................................................................................................39
3.2模糊邏輯控制原理........................................................................................39
3.2.1模糊化.................................................................................................40
3.2.2規則庫.................................................................................................41
3.2.3推論引擎.............................................................................................42
3.2.4解模糊化.............................................................................................43
3.3利用Matlab/Simulink設計模糊邏輯電池等化控制器................................44
3.3.1模糊化之設計.....................................................................................45
3.3.2規則庫之設計.....................................................................................49
3.3.3推論引擎之設計.................................................................................51
3.3.4解模糊化之設計.................................................................................53
3.4結語..………………….……..……………...................................................54
第四章 模糊邏輯電池等化控制器的穩定度分析..................................................55
4.1前言................................................................................................................55
4.2狀態空間近似法............................................................................................55
4.3模糊邏輯電池等化控制器的穩定度............................................................58
4.4結語..………………….……..……...............................................................59
第五章 電池等化器之硬體電路實現......................................................................60
5.1前言................................................................................................................60
5.2電池等化器硬體架構....................................................................................60
5.2.1電池等化控制晶片功能.....................................................................60
5.2.2電池等化控制晶片設計流程.............................................................62
5.2.3電池等化器線路設計.........................................................................63
5.3 Fuzzy Table的建立........................................................................................67
5.4結語................................................................................................................69
第六章 模擬與實驗結果..........................................................................................70
6.1前言................................................................................................................70
6.2模擬結果........................................................................................................70
6.3實驗結果........................................................................................................74
6.4結語................................................................................................................80
第七章 結論與未來研究方向..................................................................................81
7.1結論................................................................................................................81
7.2未來研究方向................................................................................................81
參考文獻......................................................................................................................83
附錄一 具有三顆電池的模糊邏輯電池等化控制器之Simulink內部模擬方塊
圖..................................................................................................................87
附錄二 模糊邏輯電池等化控制器之Simulink內部模擬方塊圖..........................87
附錄三 鋰離子電池之Simulink內部模擬方塊圖..................................................87
[1]M. Broussely, M. Perelle, J. McDowall, G. Sarre and J. Martaeng, “Lithium Ion:The Next Generation of Long Life Batteries – Characteristics, Life Predictions, and Integration into Telecommunication System,” Proceeding of Telecommunications Energy Conference, INTELEC 22th Annual International, pp.194-201, 10-14 September 2000.
[2]C. Pascual and P.T. Krein, “Switched Capacitor System for Automatic Series Battery Equalization,” Proceeding of Applied Power Electronics Conference and Exposition, APEC' 97, Twelfth Annual, vol.2, pp.848-854, 23-27 February 1997.
[3]Panasonic Batteries Handbook 20000.
[4]M.H. Yang, C.H. Hsieh and B.M. Lin, “Development of Lithium-Ion Battery for Electric Bike Application,” Proceeding of EVS-18 Berlin, October 2001.
[5]H.V. Venkatasetty and Y.U. Jeong, “Recent Advanced in Lithium-Ion and Lithium-Polymer Batteries,” Proceeding of Battery Conference on Applications and Advances, Seventeenth Annual, pp.173-178, 15-18 January 2002.
[6]J. McDowell, A. Brenier, M. Broussely and P. Lavaur, “Industrial Lithium-Ion Batteries: From the Laboratory to Real Telecom Application,” Proceeding of Telecommunications Energy Conference, INTELEC 24th Annual International, pp.373-378, 29 September-3 October 2002.
[7]N.H. Kutkut, “A Modular Nondissipative Current Diverter for EV Battery Charge Equalization,” Proceeding of Applied Power Electronics Conference and Exposition, APEC' 98, Thirteenth Annual, vol.2, pp.686-690, 15-19 February 1998.
[8]J. Chatzakis, K. Kalaitzakis, N.C. Voulgaris and S. N. Manlas, “Designing A New Generalized Battery Management System,” IEEE Transaction on Industrial Electronics, vol.50, no.5, pp.990-999, October 2003.
[9]W.F. Bentley, “Cell Balancing Considerations for Lithium-Ion Battery Systems,” Proceeding of Battery Conference on Applications and Advances, Twelfth Annual, pp.223-226, 14-17 January 1997.
[10]N.H. Kutkut, “Nondissipative Current Diverter Using a Centralized Multi-Winding Transformer,” Proceeding of Power Electronics Specialists Conference, PESC' 97, 28th Annual IEEE, vol.1, pp.648-654, 22-27 June 1997.
[11]V.L. Teofilo, L.V. Mmerritt and R.P Hollandsworth, “Advanced Lithium Ion Battery Charger,” Proceeding of Aerospace and Electronic Systems Magazine, vol.12, no.11, pp.30-36, November 1997.
[12]K. Nishijima, H. Sakamoto and K. Harada, “A PWM Controlled Simple and High Performance Battery Balancing System,” Proceeding of Power Electronics Specialists Conference, PESC 00, 31st Annual IEEE, vol.1, pp.517-520, 18-23 June 2000.
[13]N.H. Kutkut and D.M. Divan, “Dynamic Equalization Techniques for series Battery Stacks,” Proceeding of Telecommunications Energy Conference, INTELEC 18th Annual International, pp.514-521, 6-10 October 1996.
[14]N.H. Kutkut, D.M. Divan and D.W. Novotny, “Charge Equalization for Series Connected Battery Strings,” IEEE Transaction on Industrial Electronics, vol.31, no.3, pp.562-568, May-June 1995.
[15]N.H. Kutkut, L.N. Herman, D.M. Divan and D.W. Novotny, “Design Considerations for Charge Equalization of an Electric Vehicle Battery System,” Proceeding of Applied Power Electronics Conference and Exposition, APEC' 95, Tenth Annual, vol.1, no.0, part 1, pp.96-103, 5-9 March 1995.
[16]H. Sakamoto, K. Murata, K. Nishijima, K. Harada, S. Taniguchi, K. Yamasaki and G. Ariyoshi, “Balanced Charging of Series Connected Battery Cells,” Proceeding of Telecommunications Energy Conference, INTELEC Twentieth Annual International, pp.311-315, 4-8 October 1998.
[17]J. Wang, W.G. Dunford and K. Mauch, “Modified Boost Converter with Continuous Inductor Current Mode and Ripple Free Input Current,” Proceeding of Power Electronics Specialists Conference, PESC' 96, 27th Annual IEEE, vol.1, pp. 390-396, 23-27 June 1996.
[18]Z. Zhang and S. Cuk, “A High Efficiency 1.8 kW Battery Equalizer,” Applied Power Electronics Conference and Exposition, Proceeding of Applied Power Electronics Conference and Exposition, APEC' 93, Eighth Annual, pp.221-227, 7-11 March 1993.
[19]葉清強,「新型零漣波耦合電感濾波器」,碩士論文,國立清華大學電機工程學系,2001。
[20]謝冠群,陳良瑞,黃國順,陳榮昇,「以模糊控制為基礎的鋰離子電池快速充電器」,第二十屆電力研討會,pp.320-324,2000。
[21]G.C. Hsieh, L.R. Chen and K.S. Huang, “Fuzzy Controlled Li-Ion Battery Charge System with Active State-of-charge Controller,” IEEE Transaction on Industrial Electronics, vol.48, no.3, pp.585-593, June 2001.
[22]P. Singh, J. Rajagopalan, R. LaFollette, C.J. Fennie and D.E. Reisner, “Fuzzy Logic-Based Solar Charge Controller for Microbatteries,” Proceeding of Photovoltaic Specialists Conference, Twenty-Eighth IEEE, pp.1726-1729, 15-22 September 2000.
[23]P. Singh, J. Rajagopalan, R. Lafollette, C.J. Fennie and D.E. Reisner, “Fuzzy Logic-Based Micro Power Supply For MEMS Applications,” Proceeding of Battery Conference on Applications and Advances, Sixteenth Annual, pp.355-357, 9-12 January 2001.
[24]Y. Qin and S. Du, “A Practical and Low Cost PWM Battery Charger Using Fuzzy Logic Control for UPS Application,” Proceeding of Telecommunications Energy Conference, INTELEC 16th Annual International, pp.443-450, 30 October-3 November 1994.
[25]G.E.M.D.C. Bandara, R. Ivanov and S. Gishin, “Intelligent Fuzzy Controller for a Lead-Acid Battery Charger,” IEEE International Conference on Systems, Man, and Cybernetics, SMC' 99, vol.6, pp.185-189, 12-15 October 1999.
[26]G.E.M.D.C Bandara, R.M. Ivanov and S. Gishin, “Fuzzy Control of a Universal Battery Charger,” Proceeding of Fuzzy Information Processing Society, NAFIPS 18th International Conference of the North American, pp.844-848, 10-12 June 1999.
[27]李永勳,杜俊逸,「具模糊邏輯控制與柔性切換技術之鋰離子電池串的智慧型等化器」,第一屆電力電子研討會,September 2002。
[28]D. Driankov, H. Hellendoom and M. Reinfrank, “An introduction to fuzzy control,” Springer, Chap.6, pp.245-258, 1996.
[29]N. Mohan, T.M. Undeland and W.P. Robbins, “Power Electronics Converters, Applications, and Design,” John Wiley & Sons, Inc. pp.184-188, 2003.
[30]Y.S. Lee and M.W. Cheng, “Fuzzy Logic Controlled Battery Equalizer for Series Controlled Lithium-Ion Battery Strings,” Proceeding of Battery Hybrid and Fuel Cell Electric Vehicle Symposium, EVS19, pp.1891-1901, October 2002.
[31]Y.S. Lee, C.Y. Duh, G.T. Chen and S.C. Yang, “Battery Equalization Using Bi-directional Cuk Converter in DCVM Operation,” Proceeding of Power Electronics Specialists Conference, PESC 05, 36th Annual IEEE, pp.765-771, 12 June 2005.
[32]S. Cuk, “A New Zero-Ripple Switching DC-to-DC Converter and Integrated Magnetics,” IEEE Transactions on Magnetics, vol.19, no.2, pp.57-75, March 1983.
[33]P. Jose and N. Mohan, “A Novel ZVS Bidirectional Cuk Converter for Dual Voltage Systems in Automobiles,” IEEE Conference on Industrial Electronics Society, IECON 03, 29th Annual IEEE, vol.1, pp.117-122, 2-6 November 2003.
[34]P. Jose and N. Mohan, “A Novel ZVS Bidirectional Cuk Converter with H∞ Average-Current Control,” Proceeding of Power Electronics Specialists Conference, PESC 04, 35th Annual IEEE, vol.1, pp.343-349, 20-25 June 2004.
[35]L. Zhu, X. Li and J. Zhao, “The Analysis and Design of the Integrated Magnetics in Small Power Supplies and Chargers,” Proceedings of the Eighth International Conference on Electrical Machines and Systems, ICEMS 2005, vol.2, pp.1198-1202, 27-29 September 2005.
[36]Z. Lu, H. Chen and Z. Qian, “An Improved Topology of Boost Converter with Ripple Free Input Current,” Proceeding of Applied Power Electronics Conference and Exposition, APEC 00, Fifteenth Annual IEEE, vol.1, pp.528-532, 6-10 February 2000.
[37]張碩,自動控制系統,鼎茂圖書出版股份有限公司,Chap.3,pp.3-3,2001。
[38]王文俊,認識FUZZY,全華科技圖書股份有限公司,Chap.1,pp.1-4,2001。
[39]蘇木春,張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,全華科技圖書股份有限公司,Chap.6,pp.6-2,2003。
[40]8bits Micro-Controller-Unit, Sonix SN8P2711. Available: http://www.sonix.com.tw, SONIX TECHNOLOGY CO.LTD.
[41]K.C. Lee and B.H. Cho, “Design and Analysis of Automotive High Intensity Discharge Lamp Ballast Using Micro Controller Unit,” IEEE Transactions on Power Electronics, vol.18, no.6, pp.1356-1364, November 2003.
[42]J. Wang, W.G. Dunford and K. Mauch, “A Comparison of Modified Boost Converters with Continuous Inductor Current Mode and Ripple Free Input Current with Conventional Converters,” Proceeding of IAS Annual Meeting, IAS' 96, Thirty-First Annual IEEE, vol.2, pp.878-885, 6-10 October 1996.
[43]T. Furuhashi, S. Horikawa and Y. Uchikawa, “On Stability of Fuzzy Control Systems Using a Fuzzy Modeling Method,” Proceeding of Power Electronics and Motion Control on Industrial Electronics, Control, Instrumentation, and Automation, vol.2, pp.982-985, 9-13 November 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top