|
1.Azizoglu, M., Koksalan, M., & Koksalan, S. K. (2003). Scheduling to minimize maximum earliness and number of tardy jobs where machine idle time is allowed. Operational Research Society, 54, 661-664. 2.Baker, E. K. (1983). An exact algorithm for the time-constrained traveling salesman problem. Operation Research Society of America, 31(5), 938-945. 3.Baker, K. R. (1974). Introduction to sequencing and scheduling. NY:John Wiley & Sons. 4.Cai, X. Q., & Zhou, S. (1999). Stochastic scheduling on parallel machines subject to random breakdowns to minimize expected costs for earliness and tardy jobs. Operations Research, 47, 422-437. 5.Cheng, T. C. E., & Diamond, J. E. (1995). Scheduling two job classes on parallel machine. IIE Transactions, 27, 689-693. 6.Chen, T. S., Qi, X. T., & Tu, F. S. (1999). Single machine scheduling to minimize weighted earliness subject to maximum tardiness. Computers Operations Research, 24, 147-152. 7.Chen, Z. L., & Lee, C. Y. (2002). Parallel machine scheduling with a common due window. European Journal of Operational Research, 136, 512-527. 8.Duffuaa, S. O., Raouf A., Ben-Daya, M., & Makki, M. (1997). One-machine scheduling to minimize mean tardiness with minimum number tardy. Production Planning and Control, 8, 226-230. 9.Eck, B. T., & Pinedo, M. (1993). On the minimization of the makespan subject to flowtime optimality. Operations Research, 41, 797-801. 10.Feldmann, M., & Biskup, D. (2003). Single-machine scheduling for minimizing earliness and tardiness penalties by meta-heuristic approaches. Computers and Industrial Engineering, 44, 307-323. 11.George I. A., & Costas P. P. (1998). Scheduling under a common due date on parallel unrelated machine. European Journal of Operation Research, 105, 494-501. 12.Gupta, J. N. D., Hariri, A. M. A., & Potts, C. N. (1999). Single-machine scheduling to minimize maximum tardiness with minimum number of tardy jobs. Annals of Operations Research, 92, 107-123. 13.Gupta, J. N. D., Ruiz-Torres, A. J., & Webster, S. (2003). Minimizing maximum tardiness and number of tardy jobs on parallel machines subject to minimum flow-time. Journal of the Operational Research Society, 54, 1263-1274. 14.Hoogeveen, H. (2005). Invited review: Multicriteria scheduling. European Journal of Operational Research, 167, 592-623. 15.Koksalan, M., Azizoglu, M., & Kondakci, S. K. (1998). Minimizing flowtime and maximum earliness on a single machine. IIE Transactions, 30, 192-200. 16.Kondacki, K. S., & Bekiroglu, T. (1997). Scheduling with bicriteria: Total flowtime and number of tardy jobs. International Journal of Production Economics, 53, 91-99. 17.Koulamas, C. (1996). Single-machine scheduling with time windows and earliness/tardiness penalties. European Journal of Operational Research, 91, 190-202. 18.Lann, A., & Mosheiov, G. (1996). Single machine scheduling to minimize the number of early and tardy jobs. Computers & Operations Research, 23, 769-781. 19.Lann, A., & Mosheiov, G. (2003). A note on the maximum number of on-time jobs on parallel identical machines. Computers and Operations Research, 30, 1745-1749. 20.Liao, C. J., & Huang, R. H. (1991). An algorithm for minimizing the Range of lateness on a single machine. Journal of the Operational Research Society, 42, 183-186. 21.Nagar, A., Haddock, J., & Heragu, S. (1995). Multiple and bicriteria scheduling:A literature survey. European Journal of Operational Research, 81, 88-104. 22.Nelson, R. T., Sarin R. K., & Daniels, R. L. (1986). Scheduling with multiple performance measures: The one-machine case. Management Science, 32, 464-479. 23.Schaller, J. (2004). Single machine scheduling with early and quadratic tardy penalties. Computers and Industrial Engineering, 46, 511-532. 24.Sivrikaya-Serifoðlu, F., & Ulusoy, G. (1999). Parallel machine scheduling with earliness and tardiness penalties. Computers and Operations Research, 26(8), 773-787. 25.Smith, W. E. (1956). Various optimizers for single-stage production. Naval Research Logistic Quarterly, 3(1), 59-66. 26.Soloman, M. M., & Desrosiers, J. (1988). Time windows constrained routing and scheduling problem. Transportation Science, 22(1), 1-13. 27.Soroush, H. M. (1999). Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs. European Journal of Operational Research, 113, 450-468. 28.Van, W. L., & Baker, K. R. (1982). A bicriterion approach to time/cost trade-offs in sequencing. European Journal of Operational Research, 11, 48-54. 29.Van, W. L., & Gelders, L. F. (1980). Solving a bicriterion scheduling problem. European Journal of Operational Research, 4, 42-48. 30.Ventura, J. A., & Radhakrishnan, S. (2003). Single machine scheduling with symmetric earliness and tardiness penalties. European Journal of Operational Research, 144, 598-612. 31.Wu, C. C., Lee, W. C., & You, J. M. (2000). Trade-off solutions in a single-machine scheduling problem for minimizing total earliness and maximum tardiness. International Journal of Systems Science, 31, 639-647. 32.Zheng, W. X., Nagasawa, H., & Nishiyama, N. (1993). Single-machine scheduling for minimizing total cost with identical, asymmetrical earliness and tardiness penalties. International Journal of Production Research, 31, 1611-1620.
|