中文部分
1.江朋南(2003)。蟻族系統在零工型排程問題之應用。國立台灣科技大學工業管理系碩士論文,台北市。2.江柏彥(2006)。蟻群系統於多目標流程式排程近似有效解之研究。輔仁大學管理學研究所未完成之碩士論文,新莊市。3.陳鴻裕(1992)。在具有學習效果下雙機雙準則流程工廠之研究。逢甲大學統計與精算研究所碩士論文,台中市。4.盧研柏(2003)。混合式模擬退火法應用於迴流特性流程工廠之研究。國立台灣科技大學工業管理系碩士論文,台北市。
英文部分
1.Arroyo, J. E. C. & Armentano, V. A. (2005). Genetic local search for multi-objective flowshop scheduling problems. European Journal of Operational Research, 167, 717-738.
2.Baker, K. R. & Smith, J. C. (2003). A multiple-criterion model for machine scheduling. Journal of Scheduling, 6, 7–16.
3.Bülbül, K., Kaminsky, P., & Yano C. (2003). Flow shop scheduling with earliness, tardiness, and intermediate inventory holding costs. Department of IEOR, University of California at Berkeley.
4.Chen, C. L. & Bulfin, R. L. (1993). Complexity of a single machine multi-criteria scheduling problems. European Journal of Operational Research, 70, 115–125.
5.Chou, F. D. & Lee, C. E. (1999). Two-machine flowshop scheduling with bicriteria problem. Computers & Industrial Engineering, 36, 549-564
6.Cochran, J. K., Horng, S., M. & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers& Operations Research, 30, 1087-1102.
7.Colorni, A., Dorigo, M., Maniezzo, V., & Trubian, M. (1994). Ant System for job-shop scheduling. Belgian Journal of Operations Research, Statistics and Computer Science, 34, 39–53.
8.Di Caro, G. & Dorigo, M. A. (1997). A mobile agents approach to adaptive routing, Technical report.
9.Dorigo, M. & Caro, G. D. (1999). The Ant Colony Optimization meta-heuristic. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw Hill, London, UK.
10.Dorigo, M. & Gambardella, L. M. (1997). Ant colonies for the traveling salesman problem. BioSystems, 43, 73-81.
11.Dorigo, M. & Gambardella, L. M. (1997). Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation, 1, 53-66.
12.Dorigo, M. & Di Caro, G. (1999). Gambardella LM, Ant algorithms for discrete optimization. Artificial Life, 5, 137-172.
13.Eck, B. T. & Pinedo, M. L. (1993). On the minimization of the makespan subject to flowtime optimality. Operations Research, 41, 797–801.
14.Fisher, M. L. (1976). A dual algorithm for the one-machine scheduling problem. Mathematical Programming, 11, 229-251.
15.Gambardella, L. M. & Dorigo, M. (2001). An ant colony system hybridised with a new local search for the sequential ordering problem. Informs Journal on Computing.
16.Gambardella, L. M., Taillard, E. D., & Dorigo, M. (1997). Ant colonies for the QAP. Technical report.
17.Gupta, A. K. & Sivakumar, A. I. (2004). Multi-objective scheduling of two-job families on a single machine. Omega, 33, 399-405
18.Gupta, J. N. D. & Alex, R. T. (2005). Generating efficient schedules for identical parallel machines involving flow-time and tardy jobs. European Journal of Operational Research, 167, 679-695
19.Gupta, J. N. D., Neppalli, V. R., & Werner, F. (2001). Minimizing total flow time in a two-machine flowshop problem with minimum makespan. International Journal of Production Economics, 69, 323–338.
20.Gupta, S. & Sen, T. (1984). Minimizing the range of lateness on a single machine. Journal of the Operational Research Society, 35, 853-857.
21.Hoogeveen, H. (1992). Single machine bicriteria scheduling. Ph.D. dissertation, University of Eindhoven.
22.Hoogeveen, J. A. (2005). Invited Review: Multicriteria scheduling. European Journal of Operational Researc,. 167, 592-623.
23.Hoogeveen, J. A., Potts, C. N. & Woeginger, G. J. (2000). On-line scheduling on a single machine: maximizing the number of early jobs. Operations Research Letters, 27, 193-197.
24.Hoogeveen, J. A. & van de Velde, S. L. (1996). A branch-and-bound algorithm for single-machine earliness–tardiness scheduling with idle time. INFORMS Journal on Computing, 8, 402–412.
25.Hoogeveen, J. A. & van de Velde, S. L. (1997). Earliness–tardiness scheduling around almost equal due dates. INFORMS Journal on Computing, 9, 92–99.
26.Joseph, Y. T. L. & James, H. A. (2004). Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Chapman & Hall/CRC.
27.Kirpatrick, S. Gelatt, J. C., & Vecchi, M. (1983). Optimization by Simulated Annealing. Science, 220, 671-680.
28.Koksalan, M. & Keha, A. B. (2003). Using genetic algotithms for single-machine bicteria scheduling problems. European Journal of Operational Research, 145, 543-556.
29.Kyparisis, G. J. & Koulamas, C. (2000). Open shop scheduling with makespan and total completion time criteria. Computers& Operations Research, 27, 15–27.
30.Lann, Avital, Mosheiov, & Gur. (1996). Single machine scheduling to minimize the number of early and tardy jobs. Computers & Operations Research, 23, 769-781.
31.Lawler, E. L. (1982). Scheduling a single machine to minimize the number of late jobs. Preprint, Computer Science Division, University of California, Berkeley.
32.Lawler, E. L.& Labetoulle, J. (1978). On preemptive scheduling of unrelated parallel machines with linear programming. Journal of the Association of Computing Machinery, 25, 612–619.
33.Lawler, E. L., Lenstra, J. K., & Rinnooy, A.H.G. (1981). Minimizing maximum lateness in a two-machine open shop. Mathematics of Operations Research, 6, 153–158.
34.Lenstra, J. K. (1990). Unpublished manuscript, Lenstra JK, Tardos E, Shmoys DB, Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming, 46, 259–271.
35.Leung, J. Y. T. & Young, G. H. (1989). Minimizing schedule length subject to minimum flow time. SIAM Journal on Computing, 18, 314–326.
36.Li, C. L.; Cheng, T. C. E., & Chen, Z. L. (1995). Single-machine scheduling to minimize the weighted number of early and tardy agreeable jobs. Computers & Operations Research, 22, 205-219.
37.Li, G. (1997). Single machine earliness and tardiness scheduling. European Journal of Operational Research, 96, 546-558.
38.Loukil, T., Teghem, J., & Tuyttens, D. (2005). Solving multi-objective production scheduling problems using metaheuristics. European Journal of Operational Research, 161, 42-61.
39.Mansooreh, G. R. & Anagnostopoulos, G. C. (2004). A branch-and-bound algorithm for the early/tardy machine scheduling problems with a common due-date and sequence-dependent setup time. Computer & Operations Research, 31, 1727-1751
40.Mansouri, S. A. (2005). A Multi-Objective Genetic Algorithm for mixed-model sequencing on JIT assembly lines. European Journal of Operational Research, 167, 696-716.
41.Masuda, T. & Ishii, H. (1994). Two machine open shop scheduling problem with bi-criteria. Discrete Applied Mathematics, 52, 253–259.
42.Metropolis, N., Rosenblush, A., & Rosenblush, M. (1953). Teller, A. and Teller, E., Equation of State Calculations by Fast Computing Machind. Journal of Chemical Physics, 21, 1087-1092.
43.Peha, J. M. (1994). Heterogeneous-criteria scheduling: minimizing weighted number of tardy jobs and weighted completion time. Computer Ops Res, Vol. 22, No. 10, 1089-1100.
44.Richard, W. C., William, L. M., & Louis, W. M. (2003). Operation research. Dover Publications.
45.Roy, B. & Sussmann, B. (1964). Les problems d’ordonnancement avec contraintes disjunctives, Notes DS N.9 Bis, SEMA, Montrouge.
46.Shanthikumar, J. G. (1983). Scheduling jobs on one machine to minimize the maximum tardiness with minimum number of tardy. Computers & Operations Research, 10, 253–265.
47.Smith, W. E. (1956). Various optimizers for single stage production. Nav. Res. Logist, 31, p. 325-333.
48.Sourd, F. (2005). Earliness-tardiness scheduling with setup considerations. Computers & Operations Research, 32, 1849-1865.
49.Stützle, T. (1998). An ant approach to the flow shop problem, in: Proceedings of EUFIT’98, Aachen (Germany), 1560–1564.
50.T’kindt, V. & Billaut, J. C. (2002). Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin.
51.Tadei, R., Grosso, A. & Della Croce, F. (2005). Finding the Pareto-optima for the total and maximum tardiness single machine problem. Discrete Applied Mathematics, 124, 117–126.
52.Tegze, M. & Vlach, M. (1988). Improved bounds for the range of lateness on a single machine. Journal of the Operational Research Society, 39, 675-680,.
53.Toktas, B., Azizoglu, M. & Koksalan, S. K. (2003). Two-machine flow shop scheduling with two criteria: maximum earliness and make-span. European Journal of Operational Research, 157, 286-295.
54.Van Wassenhove, L. N. & Gelders, L. F. (1980). Solving a bicriterion scheduling problem. European Journal of Operational Research, 4, 42-48.
55.Varadharajan, T. K. & Rajendran, C. (2005). A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. European Journal of Operational Research, 167, 772-795.
56.Wu, C. C., Lee, W. C. & You, J. M. (2000). Trade off solutions in a single machine scheduling problem for minimizing total earliness and maximum tardiness. International Journal of Systems Science, 31 639-647.
57.Zheng, W.X., Nagasawa, H., & Nishiyama, N. (1993). Single-machine scheduling for minimizing total cost with identical, asymmetrical earliness and tardiness penalties. International Journal of Production Research, 31, 1661-1620.
58.Zhu, Z. & Heady, R. B. (2000). Minimizing the sum of earliness/tardiness in mult-machine scheduling: a mixed integer programming approach. Computers & Industrial Engineering, 38, 297-305.